仪器使用与排障・

某干式生化分析仪的使用评价

孙政敏1,贾昭华2

(1.河南省新乡市第一人民医院检验科 530000,2.河南省新乡市妇幼保健院检验科 530000)

摘 要:目的 对强生 V-350 全自动干式生化分析仪和日立 7600-020 全自动生化分析仪急诊项目进行相关分析和校正。方法 先检测两台仪器精密度、准确度,再用日立 7600-020 测定结果作为比较方法的测定值(X),以强生 V-350 测定结果作为实验 方法的测定值(Y),对结果进行相关分析和校正。结果 两仪器均有良好的精密度和线性;对强生 V-350 作了回归校正后,与日立 7600-020 的结果基本一致。结论 当检验科同一测定项目存在不同的分析系统时,应对其进行相关分析和校正,才能保证结果的准确。

关键词:天门冬氨酸氨基转移酶类; L-乳酸脱氢酶; 肌酸激酶; 干式生化分析仪; 全自动生化分析仪; K^+ ; Na^+ ; Cl^- ; Ca^{2+}

DOI: 10. 3969/j. issn. 1673-4130, 2011, 19, 041

文献标识码:A

文章编号:1673-4130(2011)19-2254-02

在同一实验室内用不同方法学的实验仪器对同一检测项目进行测定,由于方法学上的差异,部分项目参考值范围的不统一,临床上对实验数据产生困惑,也给检验科对临床的解释方面带来一定的难度。根据美国临床检验修正法规(CLIA'88)中有关质量评估的要求^[1],检验科应有具体的措施,使同一项目不同测定方法的报告具有可比性,并参照美国临床实验室标准化委员会(NCCLS) EP9-A 文件^[2],对强生 V-350 全自动干式生化分析仪与日立 7600-020 全自动生化分析仪的部分急诊项目 [(K⁺、Na⁺、Cl⁻、Ca²⁺、天门冬氨酸氨基转移酶类(ASL),L-乳酸脱氢酶(LDH),肌酸激酶(CK))]测定进行回归校正,现将结果报道如下。

1 材料与方法

- **1.1** 材料 按 NCCLS EP9-A 文件数据分布的要求收集门诊和住院患者的新鲜血清标本 50 份。
- 1.2 仪器与试剂 采用强生 V-350 全自动干式生化分析仪, 日立 7600-020 全自动生化分析仪,在强生 V-350 分析仪上测 试项目的干片均由美国强生公司提供并按要求进行操作。日 立 7600-020 全自动生化分析仪上试剂 K⁺、Na⁺、Cl⁻由日立公 司提供,Ca²⁺、AST 由英科新创(厦门)科技有限公司提供, LDH、CK 由北京首医临床检验中心提供,以上均按说明书要 求设置参数和操作。
- 1.3 方法
- 1.3.1 两台仪器分别采用自己的校准品和质控品进行测定, 验证是否通过。
- 1.3.2 精密度检测 两台仪器精密度,用各自的质控品平行测定,每天两次,每次测定间隔时间应大于 2h,连续测定 20d。按 EP-5 文件计算批内变异系数 (CV)、批间 CV、日间 CV 及总 CV。将实验得到的总 CV 与仪器提供的 CV 进行比较,验证是 否通过。
- 1.3.3 准确度检测 对卫生部临床检验中心的室间质评标本进行测定,将测定结果与回报的靶值比较,测定结果在靶值允许范围之内的则验证通过,否则说明结果准确度不能达到要求,需要找到原因后重新进行验证。
- 1.3.4 对比试验 选取不同血清标本 50 份,分别在日立 7600-020 全自动生化分析仪(X)和强生 V-350 干式生化分析仪(Y)上测定,结果作线性回归方程,对强生 V-350 进行校正,观察校正结果和日立 7600-020 结果的可比性。
- 1.4 质控品及校准品 RANDOX 校准品质控品(537UN、

567UN)。强生 V-350 校准品质控品(KIT1、KIT2、KIT3、A8625、B8627)。

2 结 果

2.1 精密度验证结果 精密度验证结果见表 1。

表 1 两台仪器的精密度验证结果(%)

项目	K	Na	Cl	Ca	AST	LDH	CK
7600 项目							
批内 CV	0.36	1.26	1.35	0.24	0.68	1.96	0.64
批间 CV	0.68	1.95	1.66	0.48	1.34	2.78	1.57
目间 CV	1.22	2.16	2.21	0.88	1.86	3.16	2.23
总 CV	1.68	2.67	2.56	1.23	2.23	3.78	2.98
V-350 项目							
批内 CV	0.48	1.64	1.53	0.30	1.31	1.86	0.98
批间 CV	1.20	2.25	2.31	0.55	1.98	2.78	1.67
目间 CV	1.68	2.87	2.56	0.96	2.33	3.26	2.98
总 CV	2.02	3. 21	2.99	1.35	2.62	3.86	3.55

CV 值均符合要求,验证通过。

2.2 准确度验证结果 准确度验证结果 见表 2。

表 2 两台仪器的准确度验证结果

项目	K ⁺	Na ⁺	Cl-	Ca ²⁺	AST	LDH	СК
测定均值	4.26	146	103.6	2.16	59	229	28
靶值	4.32	143	101.2	2.20	62	234	32
范围	\pm 0.5	± 4	± 4.0	\pm 0.25	± 12	± 46	± 9

卫生部临床检验中心室间质评标本包括的项目的准确度验证,发现7个项目的准确度验证全部能够满足要求。

2.3 对比试验结果 50 份血清标本在两台仪器上做 7 个项目对比测定,按 EP9-A 文件进行数据计算,通过计算 7 个项目的 $r \ge 0.975 (r^2 \ge 0.950)$,两台仪器结果相关性良好。由于日立 7600-020 参加卫生部和省临床检验中心组织的室间及室内质量控制计划,操作人员相对固定并进行定期保养,所以设定为比较仪器,测定结果为 X,强生 V-350 为实验仪器,测定结果为 Y,做直线回归相关分析。血清 K^+ 、 Na^+ 、 Cl^- 、 Ca^{2+} 、AST、LDH、CK 等项目的 r 及回归方程,见表 3。

两台仪器的检测结果存在差异,但相关回归分析发现两台生化分析仪的结果高度相关,说明二者的差异为 SE,其产生的原因主要是分析原理的不同及试剂的加入方式不同。由于误差来源于 SE,可以将某一台仪器作为参考标准,其他分析仪向

它靠拢。具体方法是在参数设定过程中,利用线性回归方程 Y = bX + a,在实验仪器测定参数处设定 a 值和 b 值,可获得一致的结果。

表 3 检测结果的相关系数及方程

项目	回归方程	r 值
K ⁺	Y = 0.892X + 0.449	0.983
Na ⁺	Y = 0.984X + 0.527	0.981
Cl-	Y = 0.954X + 3.672	0.977
Ca^{2+}	Y = 0.845X + 0.335	0.987
AST	Y = 1.209X - 2.630	0.998
LDH	Y = 2.671X + 28.160	0.984
CK	Y = 0.902X - 4.886	0.990

3 讨 论

强生干化学分析仪无需水源和污水排放系统,真正实现零污染,所有废料都包含在已用过的测试干片上。强生 V-350 采用光的透射和反射原理来进行测定与传统生化分析仪相比有灵活、快速的特点。在本实验室强生 V-350 上验证的 7 个生化检测项目高、低两个浓度的精密度均能达到厂商提供的精密度的要求,并且验证的 CV 均小于美国 CLIA'88 对检验分析质量要求的总容许误差,说明本实验室使用强生 V-350 干化学仪测定该 7 个生化项目具有优秀的稳定性、可重复性。准确度小于可容许误差是校准验证的通用要求,使用强生 V-350 测定的 10 个项目准确度均能达到要求,说明检测系统的测定具有优秀的准确性。线性化是反映实验方法性能特征的重要指标,是保证临床检测结果准确性的重要砝码。在对临床诊治工作有价值的可报告范围内,要求样本含量与测定信号(如吸光度、峰值等)呈线性,才能保证检测结果不会与真值有较大的偏差,

从而保证检测结果的准确可靠。检测范围验证结果表明,在厂商提供的范围中,检测系统对验证的7个项目有良好的线性,说明检测系统的测定结果可靠,可以满足临床患者标本的测定。

参考文献

- [1] 冯仁丰. 临床检验质量管理技术基础[M]. 2 版. 上海: 上海科学技术文献出版社, 2007; 37-39.
- [2] 王建平,张梅香,徐新艳,等. 爱克来 SP-4430 干式与日立 7170A 全自动生化分析仪检测结果一致性的探讨[J]. 国际检验医学杂志,2009,30(10):1003.
- [3] 顾桂兰,汪宝贯,王志勇.干化学法与湿化学法检测结果比较及相 关性分析[J]. 检验医学与临床,2010,(7):616.
- [4] 程丽萍. 干与湿化学法检测部分生化项目的分析比较[J]. 检验医学与临床,2010,(12);1245.
- [5] 李贵星,陆小军,高宝秀,等.临床生化干化学分析和湿化学分析的初步比较[J].华西医学,2003,18(1):69-70.
- [6] 王成刚,胡文健,骆小宁.干化学试纸法与全自动分析仪生化项目检测的分析比较[J].检验医学杂志,2005,20(3):273-275.
- [7] 刘定海,刘利洪,薛丽,等.两种分析仪检测生化项目的比较分析 [J].检验医学与临床,2007,4(12):1164-1165.
- [8] 王家洲.强生 VITROS 250 干化学生化分析仪使用评价[J].中国 误诊学杂志,2005,5(15);2855-2856.
- [9] 陈于思,张小蓉.罗氏 COBAS Integra400 Plus 全自动生化分析仪 故障处理[J]. 检验医学与临床,2008,5(16):1010.
- [10] 吴俊琪,徐瑞龙,杜忠明,等. VITROS-250 干式生化分析仪测定结果的比对校正[J]. 检验医学,2006,21(3):285-287.

(收稿目期:2011-03-20)

・仪器使用与排障・

两台血细胞分析仪性能评估与结果对比

姚立腾,叶秀娟

(甘肃省武威市人民医院 733000)

摘 要:目的 比较 ABX PENTRA-80 型与迈瑞 BC-5300 型两台血细胞分析仪性能之间的差别。方法 用 ICSH 公布的血细胞分析仪评价方案对仪器的精密度、携带污染率、线性范围、可比性、总重复性、白细胞分类等指标进行评价和对比。结果 两台仪器精密度、线性范围、总重复性良好,两者结果密切相关,血小板结果偏差可通过回归方程校正一致。结论 两台血细胞分析仪基本满足临床需求,定期对不同血细胞分析仪进行比对实验,对提高临床检验质量和工作效率起着积极的作用。

关键词:对比研究; 血细胞分析仪; 评估; 一致性

DOI: 10. 3969/j. issn. 1673-4130. 2011. 19. 042

文献标识码:A

文章编号:1673-4130(2011)19-2255-03

血细胞分析仪是现代临床实验室最常用的仪器,一些大中型医院的检验科同时拥有几台仪器应用于临床检验,不同的血细胞分析仪检测结果可能存在偏差,为此应对不同的仪器要进行性能评估与结果对比,以实现不同仪器检测结果具有可比性,打好检验结果互认基础。

1 资料与方法

- 1.1 一般资料 用含有 EDTA-K₂ 抗凝剂的一次性负压采血 装置,顺利采集临床新鲜静脉血。
- 1.2 仪器与试剂 HORIBA ABX PENTRA-80 型血细胞分析仪为法国 ABX 生产(以下简称 ABX),BC-5300 型血细胞分析仪为深圳迈瑞公司生产(以下简称 BC),两台仪器均用各自配套试剂和全血校准品;全血质控品为 ABX 公司生产,批号:PX011;OLYMPUS CX21 显微镜为日本产;瑞氏染液及手工

测定试剂均按文献[1]配制。

1.3 方法

- 1.3.1 血细胞仪器计数 由厂家工程师对各自血细胞分析仪用配套校准品校准,血细胞计数严格按照仪器使用说明进行,用国际血液学标准化委员会(ICSH)公布的血细胞分析仪评价方案对仪器的精密度、携带污染率、线性范围、可比性、总重复性、白细胞分类等指标进行评价和对比[2]。
- 1.3.2 统计学处理 所有数据使用计算机统计软件 SPSS 17.0 处理。

2 结 果

2.1 精密度试验 将高、中、低值新鲜全血标本各1份在两台 仪器上分别重复测定 20 次,2 h 内完成,WBC、RBC、HGB、 HCT、PLT 的变异系数(CV)在 0.81~2.80 之间,表明两台仪