异,因此低浓度曲线和高浓度曲线均是等精度的。对回归系数 斜率 b 以及截距 a 进行统计学检验,低浓度曲线的 $|T| < T_{0.05(12)}$,高浓度曲线的 $|T| < T_{0.05(12)}$,方流发力量差异。

表 3 低浓度曲线的基本参数

序号	样本 容量	剩余标准差	自变量的 差方和	自变量的 均值	因变量的 均值
低曲线1	6	0.0018	71.3333	4.3333	0.048 7
低曲线 2	6	0.0113	71.3333	4.3333	0.047 2
低曲线3	6	0.0124	71.3333	4.3333	0.0488
低曲线 4	6	0.000 4	71.3333	4.3333	0.045 0
低曲线 5	6	0.0015	71.3333	4.3333	0.047 2
低曲线 6	6	0.0129	71.3333	4.3333	0.0515
低曲线 7	6	0.0129	71.3333	4.3333	0.0527
低曲线 8	6	0.0114	71.3333	4.3333	0.049 2
低曲线 9	6	0.012 3	71.3333	4.3333	0.0507
低曲线 10	6	0.0016	71.3333	4.3333	0.0553
低曲线 11	6	0.0010	71.3333	4.3333	0.0537

2.3 准确度实验 用环境标准样品在第 31 天与标准曲线同时测定,测得结果分别为 1.20、1.16、1.15、1.19、1.18、1.16 mg/L,平均值为 1.17 mg/L,均在标准值(1.18±0.06) mg/L的范围内。

· 质控与标规 ·

表 4 高浓度曲线的基本参数

	样本	利人标准关	自变量的	自变量的	因变量的
序号	容量	剩余标准差	差方和	均值	均值
高曲线 1	8	0.049 6	6 346.875	12.5	0.140 1
高曲线 2	8	0.049 9	6 346.875	12.5	0.058 0
高曲线3	8	0.057 8	6 346.875	12.5	0.0598
高曲线 4	8	0.0598	6 346.875	12.5	0.137 4
高曲线 5	8	0.028 7	6 346.875	12.5	0.130 3
高曲线 6	8	0.025 2	6 346.875	12.5	0.123 9
高曲线 7	8	0.025 1	6 346.875	12.5	0.139 1
高曲线 8	8	0.005 2	6 346.875	12.5	0.137 0

3 讨 论

实验结果表明,在低温密闭贮存条件下,氨氮标准使用溶液性质稳定,可有效保存1个月,降低了测定成本,提高了工作效率,具有很好的实际应用价值。

参考文献

- [1] 王开校. 有关标准溶液几个问题的探讨[J]. 中国卫生检验杂志, 2000,10(1);126-126.
- [2] 国家标准化管理委员会. GB/T5750-2006 生活饮用水卫生标准 生活饮用水标准检验方法[S]. 北京:中国标准出版社,2007.
- [3] 中国环境监测总站. 环境水质检测质量保证手册[M]. 2 版. 北京: 化学工业出版社,1994;231-298.

(收稿日期:2013-10-06)

血液细胞分析仪室内质控的范围设定与实践

董家书,彭 华,邹单东,蒙 杰,戴盛明△ (广西医科大第四附属医院检验科,广西柳州 545005)

摘 要:目的 探讨血细胞分析仪室内质控范围设定的方法。方法 通过对 2 种室内质控范围设定的比较,优选适用于血细胞分析仪室内质控控制范围的设定方法。结果 2 种方法中,以 20 个测定数据计算均值,再用前 3 个批次的加权平均不精密度 (CV%)计算的标准差(s),失控率和控制效果更加令人满意。结论 用加权平均 CV%计算的 s 值来设定质控的控制范围,更适用于血细胞分析仪质量控制。

关键词:血细胞分析仪; 室内质控; 质控范围; 标准差

DOI: 10. 3969/j. issn. 1673-4130. 2013. 23. 051

文献标识码:A

文章编号:1673-4130(2013)23-3213-02

医学实验室室内质量控制范围,在《临床实验室定量测定室内质量控制指南》^[1]和 CNAS-CL43《医学实验室质量和能力认可准则在临床血液学检验领域的应用说明》^[2]中有明确要求,均值和控制范围应通过检测来确定。对于血细胞分析仪室内质控范围的设定,实验室有不同的方法。本文通过选取一个水平的质控品测定数据,应用所测得的均值(x)和标准差(s)与用加权平均不精密度(CV%)来确定的 S,设定血细胞分析仪室内质控的控制限,失控规则采用 1_{3s} 、 2_{2s} ,以 1 个月的 Levey-Jennings 质控图判断,进行失控比较。现汇报如下。

1 材料与方法

- 1.1 仪器与试剂 XS-800i 血细胞分析仪及配套试剂。
- 1.2 质控品 SYSMEX 配套质控品, XS-800i 血细胞分析仪 质控品批号 30490804, 有效期至 2013 年 5 月 12 日。

- 1.3 方法
- 1.3.1 质控文档设定 在仪器的"IPU"中,将制造商提供的均值和控制限输入。
- **1.3.2** 测定方法 参照文献[2]用质控模式每天测定 5 次,每次测定间隔 2 h,连续测定 4 d,共 20 组数据。
- **1.3.3** 数据处理 用仪器质控的自动计算显示出 $\overline{x} = s$,截屏打印。 \overline{x} 即为新质控的 \overline{x} ,s 记为 s_1 。 另用前 3 批质控数据的 CV% (不精密度),用加权法 [3] 算得的加权平均 CV%,再与所测均值计算得到 s,记为 s_2 ,加权平均 CV% 计算式如下:加权平均 CV% = $(n_1 \times CV_1 + n_2 \times CV_2 + n_3 \times CV_3) \div (n_1 + n_2 + n_3)$; s_2 = 加权平均 CV ×均值 ÷ 100,式中 n 为每批的质控次数(包括在控与失控的次数)。
- 1.3.4 质量控制限设定 在 LIS 质控系统中,用 与 s₁ 和 s₂

[△] 通讯作者, E-mail: shengmdai@yahoo.com。

分别设置质控计划,标记为 A 计划控制限和 B 计划控制限。新质控品开始使用后,质控数据分别接收入 A、B 计划中判断是否失控。

1.3.5 质控的失控规则 依据文献[2]选择 1₃、2₂、为失控判

断规则。

- 2 结 集
- 2.1 各项目控制范围设定 见表 1。

表 1 各项目控制范围设定

项目	厂家范围	自测	S_1	S_2	A计划控制限	B计划控制限
RBC(10 ¹² /L)	2.32±0.12	2.33	0.02	0.03	2.33±0.06	2.33±0.09
HGB(g/L)	59.00 ± 2.00	59.00	0.50	0.77	59.00 ± 1.50	59.00 ± 2.30
HCT(%)	18.10 ± 1.10	18.50	0.20	0.50	18.50 ± 0.60	18.50 ± 1.50
MCV(fL)	78.20 ± 3.90	79.30	0.62	0.89	79.30 \pm 1.80	79.30 \pm 2.60
MCH(pg)	25.40 ± 1.30	25.10	0.19	0.30	25.10 ± 0.57	25.10 ± 0.90
MCHC(g/L)	326.00 ± 20.00	322.00	3.90	4.60	322.00 ± 11.70	322.00 ± 17.80
RDW-SD(fL)	46.30 ± 6.90	45.10	0.33	0.44	45.10 ± 1.00	45.10 ± 1.30
RDW-CV(%)	16.40 ± 2.50	16.50	0.10	0.21	16.40 ± 0.30	16.4 ± 0.63
PDW(fL)	11.00 ± 4.40	10.70	0.66	0.72	10.70 \pm 1.98	10.7 \pm 2.16
PCT(%)	0.06 ± 0.03	0.06	0.01	0.01	0.06 ± 0.02	0.06 ± 0.03
MPV(fL)	9.90 ± 1.50	9.80	0.20	0.40	9.80 ± 0.60	9.8 ± 1.20
P-LCR(%)	19.70 ± 16.70	17.30	0.99	1.77	17.30 ± 2.00	17.30 ± 3.50
WBC-D $(10^9/L)$	2.94 ± 0.29	2.87	0.05	0.07	2.87 ± 0.25	2.87 ± 0.21
WBC-C(10 ⁹ /L)	2.86 ± 0.29	2.88	0.04	0.07	2.88 ± 0.12	2.88 ± 0.21
NEUT(10 ⁹ /L)	1.11 ± 0.33	1.06	0.02	0.04	1.06 ± 0.06	1.06 ± 0.12
$LYMPH(10^9/L)$	1.12 ± 0.45	1.14	0.04	0.04	1.14 ± 0.12	1.14 ± 0.12
$MONO(10^9/L)$	0.29 ± 0.26	0.24	0.02	0.03	0.24 ± 0.06	0.24 ± 0.09
EO(109/L)	0.26 ± 0.13	0.26	0.03	0.03	0.26 ± 0.09	0.26 ± 0.09
$\mathrm{BASO}(10^9/\mathrm{L})$	0.16 ± 0.12	0.16	0.01	0.02	0.16 ± 0.03	0.16 ± 0.06
PLT(10 ⁹ /L)	58.00 ± 23.00	58.00	3.40	6.00	58.00 ± 10.20	58.00 ± 18.00

2.2 统计 1 个月质控数据, A 计划失控 39 次, B 计划失控 5 次。A 计划中,项目失控次数分布如下, MCV 为 12 次, RDW-CV 为 9 次, MCHC 为 3 次, Hb、RDW-SD、P-LCR、PLT 均为 2 次, RBC、HCT、MCH、MPV、WBC-D、WBC-C、MONO 均为 1 次。B 计划中,项目失控次数分布为, MCV 为 2 次, MCHC、RDW-CV、PLT 均为 1 次,其余项目均为 0 次。

3 讨 论

从表 2 可见,按照直接测定所得的 s1 和用加权平均方法 所得的 s2 设定质控计划,失控规则采用 1ss, 2zs。以 1 个月的 Levey-Jennings 质控图判断,以 s1 设定控制线,失控 39 次,以 s2 设定控制线,失控 5 次。说明以 s1 设定控制线,失控率较 高,对于血细胞分析数据,如表 2 中 WBC 均值 2.87,增加或减 少 0.21,失控次数最多的 MCV 均值 79.3,增加或减少 2.6,失 控排第 2 位的 RDW-CV 均值 16.4,增加或减少 1,对临床无实 际诊断意义。而过高的失控率,对实验室工作和人员的影响就 不一样,过多的失控分析与处理,影响工作的正常进度。久而 久之,工作人员产生抵触情绪,对失控视而不见,或失控分析和 处理流于形式,可能导致漏掉一些真正有意义的失控。现在血细胞分析仪的精密度普遍较好,按直接统计得到的 s 来设定质控限,范围会很小,造成失控率过高。用加权平均 CV% 与均值计算所得的 s 来设定质控限,能满足临床诊断需要,又能减少失控率,适用于血细胞分析仪质量控制限的设定。

参考文献

- [1] 卫生部临床检验中心. GB/T20468-2006 临床实验室定量测定室内质量控制指南[S]. 北京:中华人民共和国国家质量监督检验检疫总局,2006.
- [2] 中国合格评定国家认可委员会. CNAS-CL43:医学实验室质量和能力认可准则在临床血液学检验领域的应用说明[S]. 北京:中国合格评定国家认可委员会,2012.
- [3] 段春艳. 浅谈血液分析仪的质量控制[J]中华临床医学卫生杂志, 2006,4(9):68-68.

(收稿日期:2013-10-04)