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万古霉素中介金黄色葡萄球菌及其相关二元调控系统

丁　丁
１综述，马筱玲２△，鲁怀伟２审校

（１．蚌埠医学院，安徽蚌埠２３３０００；２．安徽省立医院检验科，合肥２３０００１）
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　　金黄色葡萄球菌是一种在环境中普遍存在的革兰阳性球

菌，致病力强，可引起局部化脓、肺炎、关节炎、心包炎，甚至败

血症、脓毒症等严重感染。近年来，金黄色葡萄球菌的耐药性

逐年增加，其中最严重的是耐甲氧西林金黄色葡萄球菌（ＭＲ

ＳＡ）。临床治疗 ＭＲＳＡ感染以万古霉素为首选，然而随着万

古霉素用量的增加，敏感性逐渐降低。金黄色葡萄球菌对万古

霉素耐药主要分为三个类型：万古霉素耐药金黄色葡萄球菌

（ＶＲＳＡ）、万古霉素中介金黄色葡萄球菌（ＶＩＳＡ）和异质性万

古霉素中介金黄色葡萄球菌（ｈＶＩＳＡ）。其中 ＶＲＳＡ耐药机制

主要与 ＶａｎＡ基因有关，而 ＶＩＳＡ并没有明确的基因改变，它

的耐药机制主要包括细胞壁增厚、肽聚糖交联的改变、青霉素

结合蛋白的改变、自溶系统的抑制以及代谢的改变等。已有的

研究发现，ＶＩＳＡ中二元调控系统参与调节万古霉素耐药性的

形成机制。

二元调控系统是存在于细菌和真菌中的一种信号转导机

制，其中又以细菌中最为广泛。典型的二元调控系统由组氨酸

激酶和反应调控蛋白两个部分组成，每个部分包括两个结构

域，其中组氨酸激酶包括传感器结构域和传递器结构域，反应

调控蛋白包括接收器结构域和效应器结构域［１］。当组氨酸激

酶的传感器结构域感应到外界或内部环境发生变化时，催化

ＡＴＰ依赖的特定的组氨酸残基自身磷酸化，然后反应调控蛋

白将磷酸基团转移到其同源的接收器结构域的天冬氨酸残基

上。这改变了一种ＤＮＡ结合的效应器结构域的活性，从而产

生了一系列生物学效应。大量研究证实，某些二元调控系统的

变异或过度表达是参与万古霉素敏感性下降最重要的调控［２］。

本文将对与ＶＩＳＡ相关的二元调控系统的结构及其调节万古

霉素的耐药机制进行综述。

１　万古霉素耐药相关的调节系统

万古霉素耐药相关的调节系统（ＶｒａＳＲ）是磷酸转移酶介

导的二元调控系统，由组氨酸激酶 ＶｒａＳ和反应调控蛋白

ＶｒａＲ两个部分组成。ＶｒａＳＲ在保持细胞壁肽聚糖完整性上

起重要作用，能迅速感应细胞壁的损害并做出相应的反应。在

金黄色葡萄球菌中，ＶｒａＳＲ二元调控系统的基因突变或表达

增加在对万古霉素的耐药上起到了重要的作用。ＶＩＳＡ中的

ＶｒａＳＲ有明显地表达上调，该调节系统可正向调节细胞壁肽

聚糖的合成，造成细菌细胞壁增厚［２］。ＶｒａＳＲ系统还调节许多

与细胞壁合成有关的基因，如编码ｐｂｐ２的基因ｐｂｐＢ高表达

在ＶＩＳＡ中也发挥着重要的作用
［３］，ｐｂｐ２与万古霉素竞争结

合肽聚糖前体上的活性靶位，阻碍了万古霉素与靶位结合，导

致耐药的产生。近来有报道对４２株ＶＩＳＡ菌株的遗传分析证

实了与糖肽类抗菌药物耐药密切关联的氨基酸替换主要发生

在ＶｒａＳ，其中第５位的亮氨酸突变为天冬氨酸，第３２９位的丝

氨酸突变为亮氨酸是万古霉素的常见突变点。这些点突变在

ＶｒａＳＲ二元调控系统的过度表达是导致万古霉素耐药性增加

的关键因素［４５］。Ｄｏｄｄａｎｇｏｕｄａｒ等
［６７］在体外诱导临床菌株试

验中还发现万古霉素对金黄色葡萄球菌敏感性降低与 ＶｒａＳＲ

基因中第１位氨基酸的突变有关。

２　糖肽类耐药相关调节系统

参与磷酸转移酶介导信号转导通路的糖肽类耐药相关调

节系统（ＧｒａＳＲ）的二元调控基因由组氨酸激酶ＧｒａＳ和反应调

控蛋白ＧｒａＲ组成。ＧｒａＳＲ二元调控系统在维持细胞壁肽聚

糖的完整性和协调金黄色葡萄球菌响应细胞壁损坏中起核心

作用。ＧｒａＳＲ二元调控系统的表达使得金葡菌对万古霉素的

ＭＩＣ值升高到 ＶＩＳＡ水平。有研究发现 ＧｒａＳＲ基因在 ＶＩＳＡ

中呈过表达趋势。过度表达的ＧｒａＳＲ基因造成细菌细胞壁显

著增厚以及其自溶系统的抑制［２］，自溶活动的下降可以增加细

胞壁肽聚糖的集聚，减少万古霉素的渗透率，从而导致耐药性

的产生。Ｈｉｇｈｌａｎｄｅｒ等
［８］通过对ＶＩＳＡ菌株的研究发现ＧｒａＲ

氨基酸序列中第１１９７位的天冬酰胺突变为丝氨酸与万古霉

素的耐药性有关。还有报道指出 ＧｒａＲ蛋白构象变化导致

ＧｒａＳＲ基因的突变可能会激活没有信号输入的信号转换器

ＧｒａＳ的反应调节功能
［９］，造成万古霉素敏感性的下降。研究
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发现，ＧｒａＳＲ二元调控系统正向调节位于金黄色葡萄球菌染

色体中的 ＭｇｒＡ基因。ＭｒｇＡ基因的过度表达增加了万古霉

素的 ＭＩＣ值
［１０］，导致ＶＩＳＡ表型的产生。另外，Ｄｏｄｄａｎｇｏｕｄａｒ

等［７］发现在ＧｒａＲ中第１４８位氨基酸的突变与金黄色葡萄球

菌对万古霉素耐药性形成有关。

３　细胞壁相关调控系统

金黄色葡萄球菌的细胞壁相关调控系统（ＷａｌＫＲ）的二元

调控基因含有５个操纵子，分别为 ＷａｌＫ、ＷａｌＲ、ＹｙｃＨ、ＹｙｃＩ

和ＹｙｃＪ。其中前两个操纵子分别编码典型的组氨酸激酶

ＷａｌＫ和反应调控蛋白 ＷａｌＲ，共同参与细菌耐药机制的表达

调控。对万古霉素耐药的金黄色葡萄球菌临床菌株进行双向

等位基因交换实验发现，ＷａｌＫ或 ＷａｌＲ基因中单核苷酸突变

可以控制细胞的新陈代谢以及造成细菌细胞壁增厚［１１］，从而

增强对万古霉素的耐药性。ＷａｌＫＲ二元调控系统可以控制肽

聚糖的生物合成并且通过横桥降解肽聚糖间交联［１２］。肽聚糖

的合成增多可以导致细胞壁增厚，交联的减少导致Ｄ丙氨酰

Ｄ丙氨酸侧链的增加，万古霉素大量结合在这些侧链上而被阻

隔在细胞膜外，使得其无法通过细胞壁进而发挥耐药作用。还

有研究发现，ＷａｌＫＲ二元调控系统调节９种参与细胞壁代谢

相关的基因（ＡｔｌＡ、ＬｙｔＭ、ＩｓａＡ、ＳｃｅＤ、ＳｓａＡ、Ｓｌｅ１、ＳＡＯＵＨＳＣ＿

００６７１、ＳＡＯＵＨＳＣ＿０２５７６、ＳＡＯＵＨＳＣ＿０２８８３），其中 ＡｔｌＡ和

ＬｙｔＭ基因编码金黄色葡萄球菌自溶酶，ＩｓａＡ和ＳｃｅＤ基因编

码溶菌性转糖基酶［１３１４］。ＷａｌＫＲ二元调控系统的低表达导致

ＡｔｌＡ／ＬｙｔＭ自溶酶基因下调
［８］，在 ＶＩＳＡ的耐药机制中起着

关键性作用。

４　附属基因调节系统

在金黄色葡萄球菌中作为群体感应系统的附属基因调节

因子（Ａｇｒ）对分泌外毒素和细胞表面蛋白的基因进行调节，是

最早发现的调控位点。金黄色葡萄球菌 Ａｇｒ的同源性不高，

至少存在４种不同的多态性，分别为 ＡｇｒⅠ～Ⅳ，大多数研究

发现ＶＩＳＡ主要与 ＡｇｒⅡ型有关。长期服用万古霉素可引起

Ａｇｒ二元调控基因的下调
［１５］，Ａｇｒ位点功能的缺陷减少了ＶＩ

ＳＡ胞外蛋白酶的生成
［１６］并增加了纤维蛋白原、纤维结合素与

血管内皮细胞的黏附性，从而促进生物被膜的合成。生物被膜

内有多层细菌生长，可以阻碍抗菌药物万古霉素进入并避免细

菌被宿主的免疫防御系统清除，导致了金黄色葡萄球菌对万古

霉素耐药性增强。近年来有研究发现存在于 ＶＩＳＡ菌株 Ａｇｒ

位点的由Ｐ３启动子引导的反向转录单元ＲＮＡⅢ能够在翻译

水平影响多种基因的表达［１７］，例如无法产生δ溶血素
［１０］，而

δ溶血素的合成与生物被膜的形成呈负相关，这种变化可能也

是导致万古霉素敏感性降低的重要因素之一。

５　其他一些二元调控系统

在ＶＩＳＡ相关文献中还报道一些与万古霉素耐药有关的

二元调控系统。其中葡萄球菌附属原件系统（ＳａｅＳＲ）是通过

转座子 Ｔｎ５５１的插入突变发现的。ＳａｅＳＲ是一个整体调节

子，可以下调Ａｇｒ的表达，并且控制表面结合蛋白（ＦｎＢＰｓ）和

一个假定的纤维蛋白原结合蛋白（ＳＡ１０００蛋白）的转录，有助

于细菌黏附、上皮细胞的入侵以及生物膜的形成［１８］，与耐药性

的产生有关。

从基因组文库中被筛选出的自溶相关区域系统（ＡｒｌＳＲ）

二元调控系统具有调控多种药物转运蛋白ｎｏｒＡ
［１９］表达的功

能，金黄色葡萄球菌 ＡｒｌＳＲ基因缺失突变可以增加聚Ｎ乙酰

葡糖胺的累积，并且增强细菌表面生物膜的形成能力［２０］，这与

万古霉素治疗过程中细菌耐药性的产生有关。Ｍｅｍｍｉ等
［２１］

研究发现，ＡｒｌＳ基因突变可以在一定程度上降低ＲＮＡⅢ的转

录，抑制细菌自溶。自溶性下降能够增加金黄色葡萄球菌细胞

壁肽聚糖间集聚，并且降低万古霉素的渗透率，造成万古霉素

耐药。

２００１年，在金黄色葡萄球菌中发现了一个能够感应氧压

力环境的二元调控系统：葡萄球菌呼吸反应系统（ＳｒｒＡＢ），Ｓｒ

ｒＡＢ是需氧和厌氧呼吸反应元件调节系统，可以在缺氧环境中

过度表达［２２］。研究发现，在厌氧条件下 ＳｒｒＡＢ 能够上调

ｉｃａＡＤＢＣ启动子的转录表达
［２３］，促进细胞间多糖黏附素（ＰＩＡ）

的合成，从而增强生物膜的形成，但在有氧条件下并无此现象。

所以，ＳｒｒＡＢ系统能够在厌氧条件下参与金黄色葡萄球菌耐药

性表达的调控。

还有研究发现，ＬｙｔＳＲ也是一种与自溶有关二元调控系

统。ＬｙｔＳＲ系统可以正向调控位于ＬｙｔＳ和ＬｙｔＲ基因下游的

两个开放阅读框架ＬｒｇＡ和ＬｒｇＢ
［２４］，然而ＬｒｇＡ和ＬｒｇＢ蛋白

可以抑制胞壁质水解酶的活性，降低自溶素的表达，这可能与

细菌耐药性的产生有关。

综上所述，金黄色葡萄球菌对万古霉素中介耐药是一个复

杂的多因素参与的过程，二元调控系统通过调控某些基因的高

表达或低表达来参与多种耐药机制（如细胞壁增厚、生物膜增

多、自溶系统受到抑制等等）的调节，未来可以研究是否通过基

因敲除技术可以减低耐药性的产生。ＶＩＳＡ的出现给金黄色

葡萄球菌引起的院内感染造成极大威胁，因此，研究二元调控

系统调节ＶＩＳＡ对万古霉素的耐药机制，对于发展新型抗菌药

物，延缓该类耐药性的发生和发展具有一定的临床意义。
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新型肿瘤标志物：人附睾蛋白４

陈小燕 综述，韩光辉 审校

（临沂市妇幼保健院，山东临沂２７６０００）

　　关键词：肿瘤标志物；　人附睾蛋白４；　综述
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　　人附睾蛋白４（ＨＥ４）是近年来发现的一个肿瘤标志物。

在卵巢癌、子宫内膜癌、肺癌、前列腺癌、泌尿系统移行细胞癌

等的诊断与治疗方面对其有较多研究，尤其是它在卵巢癌的诊

断中日益受到重视［１］。现对 ＨＥ４的结构、表达、功能，以及在

癌症诊断、监测等方面的研究进展作一综述。

１　ＨＥ４的生物学特性和在组织中的表达

ＨＥ４基因最早在附睾远端上皮细胞中发现，该基因位于

染色体２０ｑ１２～１３．１上，全长约１１７８０ｋｂ，包含４个内含子和

５个外显子，其编码的蛋白由１２４个氨基酸组成。它在精子的

成熟过程中起关键作用。ＨＥ４蛋白是由 ＷＦＤＣ２基因编码的

蛋白，由两个乳清酸性蛋白域和一个“４，２二硫化中心”组成，

是具有保护性免疫作用的蛋白酶抑制剂家族中的一员。该蛋

白是一个相对分子质量较小的、酸性的、半胱氨酸含量丰富的

分沁型蛋白。它以三聚体的方式分泌，是一种跨界的蛋白酶抑

制剂，能抑制丝氨酸蛋白酶、天门冬氨酸蛋白酶和半胱氨酸蛋

白酶等。作为蛋白酶抑制剂，其二硫化核心起着关键作用。

ＨＥ４是一个糖基化的蛋白，能在较大的ｐＨ 和温度范围内保

持结构和活性的稳定。

ＨＥ４蛋白可表达于正常组织，并非肿瘤特异性蛋白。通

过基因芯片分析，在正常组织中，呼吸道和唾液腺的上皮细胞

中 ＨＥ４呈现高表达；表达量相对少一些的组织有肺、前列腺、

垂体、甲状腺和肾。在成人肿瘤组织中，以卵巢浆液性癌组织

中 ＨＥ４表达最高。此外，在肺腺癌、乳腺腺癌、移行细胞癌、胰

腺癌的组织中也有中度或高度的阳性表达［２］。有学者通过
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