明显高于对照组,提示轮状病毒感染的患儿存在明显心肌损伤情况。对明确有心肌损伤的患儿,应在原发病的基础上对心肌进行保护,防止心肌进一步损伤,同时及时纠正酸中毒、脱水及电解质紊乱也是改善轮状病毒感染所致心肌损伤的重要措施。

综上所述,对轮状病毒腹泻患儿,应早期检测血清 cTnT、心肌酶谱,以加强对心肌的保护性治疗和动态观察,降低心肌损害的发生率,以便早期诊断,及时处理。

参考文献

- [1] 吴瑞. 轮状病毒检测在小儿腹泻诊断中的运用[J]. 吉林医学, 2014, 35(5):1000-1001.
- [2] 何建华,杨学彤,杨学磊.2 745 例腹泻儿童轮状病毒感染分析 [Z],2010:62.
- [3] 方鹤松. 中国腹泻病诊断治疗方案[J]. 中国实用儿科杂志,1998,
- 临床研究 •

13(6).381-384

- [4] 罗明,龚成,史玲莉,等. 五种常用轮状病毒检测方法的评价及应用策略[J],疾病监测,2014,29(3),223-227.
- [5] 朱通球,张晓桂,刘勇,等.心肌酶检测评价婴幼儿轮状病毒腹泻 并心肌损害[J].实用预防医学,2014,21(7);811.
- [6] 刘惠芬,林定忠,苏兰妹,等.5岁以下腹泻婴幼儿A群轮状病毒感染调查[J].临床医学,2012,32(10):29-30.
- [7] 周小平,廖华,张寿斌. 轮状病毒肠炎患儿心肌酶谱和肌钙蛋白变 化及其临床意义[J]. 中国实用医药,2008,6(16),69-70.
- [8] 林惠泉,蔡海明,付思源.轮状病毒肠炎并心肌损害临床分析[J]. 中国医药导报,2010,7(2):25-26.

(收稿日期:2016-02-22)

迈瑞 BC6800 血细胞分析仪临床应用性能评价

彭致平1,黄明兰1,赵连娣1,柯云云2

(1. 东莞康华医院检验科,广东东莞 523002; 2. 广东医学院,广东东莞 523808)

摘 要:目的 对迈瑞 BC6800 血细胞分析仪进行临床应用性能评价。方法 根据中华人民共和国卫生行业标准 WS/T406-2012 的要求,对迈瑞 BC6800 血细胞分析仪白细胞(WBC)、红细胞(RBC)、血红蛋白(HGB)、血小板(PLT)、红细胞压积(HCT) 五项参数进行批内精密度,批间精密度,正确度,携带污染率,线性范围检测。结果 BC6800 对 WBC、RBC、HGB、PLT、HCT 批内精密度,批间精密度,正确度,携带污染率和线性范围均在允许范围内。结论 迈瑞 BC6800 血细胞分析仪各项性能精确,是目前理想的血细胞分析仪。

关键词:血细胞分析仪; 迈瑞 6800; 性能评价

DOI: 10. 3969/j. issn. 1673-4130. 2016. 08. 053

文献标识码:A

文章编号:1673-4130(2016)08-1136-02

血液分析仪是医学实验室重要仪器之一,它的性能直接关系到检验报告的准确性[1]。迈瑞 Mindary BC 6800 血细胞分析仪采用库尔特原理检测红细胞(RBC)和血小板(PLT)的数目和体积分布,使用比色法测定血红蛋白(HGB)浓度,在白细胞(WBC)分类计数方面,仪器采用流式细胞法与激光射频法[2]进行分析。本科室新装仪器后,依照中华人民共和国卫生行业标准 WS/T406-2012[3]的要求对该仪器进行了性能评价,现将结果报道如下。

1 材料与方法

- 1.1 标本来源 当日不超过7h EDTA健康人混合抗凝血, 迈瑞配套高、中值质控液。
- 1.2 仪器与试剂 深圳迈瑞 BC6800 全自动血细胞分析仪, 配套试剂、质控品。

1.3 方法

- 1.3.1 批内精密度 取 1 份健康成人体检者的标本,手动进样连续检测 11 次,去除第一次结果,计算后 10 次检测结果 WBC、RBC、HGB、PLT、血细胞压积(HCT)的算术平均值、标准差和变异系数。变异系数分别小于 4.0%、2.0%、1.5%、5.0%、3.0%为合格。单位如下,WBC(×10 9 /L)、RBC(×10 12 /L)、HGB(g/L)、PLT(×10 9 /L)、HCT(L/L)。
- 1.3.2 批间精密度 取高、中两个水平的质控品,连续监测 20 天,计算在控数据的变异系数,WBC、RBC、HGB、PLT、HCT的变异系数分别小于 6.0%、2.5%、2.0%、8.0%、4.0% 为合格,检测单位同 1.3.1。
- 1.3.3 正确度 取 10 份检测结果在参考区间内的新鲜静脉

全血样本,每份样本检测两次,计算 20 次检测结果的均值,以 急诊 BC6800 的测定均值为标准,计算偏倚,WBC、RBC、HGB、 PLT、HCT 的偏倚分别小于 5.0%、2.0%、2.5%、6.0%、2.5% 为合格,检测单位同 1.3.1。

- 1.3.4 携带污染率 分别针对不同检测项目,取一份高浓度的 EDTA-K2 抗凝静脉血,混合均匀后连续测定 3 次;再取一份低浓度样本,混合均匀后连续测定 3 次,计算携带污染率,WBC、RBC、HGB、PLT 的携带污染率分别小于 3.0%、2.0%、4.0%为合格,检测单位同 1.3.1。
- 1.3.5 线性范围 选取一份接近预期上限的高值全血样本 (H),分别按 100%、80%、60%,40%、20%、10%的比例进行稀释,每个稀释度重复测定 2 次,计算均值。将实测值与理论值作比较(偏离应小于国标规定范围),计算 Y = aX + b,验证线性范围。线性回归方程的斜率在 $0.95 \sim 1.05$ 范围内,相关系数 $r^2 \ge 0.95$ 为合格。
- **1.4** 统计学处理 统计学处理试验数据用 Excel 2003 进行。 **2** 结 果
- 2.1 批内精密度验证结果 见表 1。

表 1 批内精密度

项目	\overline{x}	S	CV(%)
WBC	5.569	0.109 5	1.97
RBC	4.904	0.022 7	0.46
HGB	159.8	0.632 5	0.40
PLT	0.4616	0.002 9	2.50
HCT	221.3	5.5387	0.62

- 2.2 批间精密度验证结果 见表 2。
- 2.3 正确度验证结果 见表 3。
- 2.4 携带污染率验证结果 见表 4。

表 2 批间精密度

项目	$\overline{X1}$	$\overline{X2}$	s_1	s ₂	$CV_1(\%)$	CV ₂ (%)
WBC	19.06	6.675	0.158 2	0.100 5	0.83	1.51
RBC	5.535	4.708	0.030 5	0.036 1	0.55	0.77
HGB	174.3	136.4	0.732 7	0.6708	0.42	0.49
PLT	437.3	223.7	16.108	6.594 3	3.68	2.95
HCT	0.5573	0.4322	0.003 4	0.003 2	0.61	0.75

表 3 正	通度
-------	----

仪器/项目	WBC	RBC	HGB	PLT	HCT
门诊 6800	6.330	4.764	147.2	219.8	0.4354
急诊 6800	6.339	4.723	149	219	0.4351
偏倚	-0.15	0.87	-1.24	0.37	0.06

	表 4	携带污染率的验证
--	-----	----------

项目	WBC	RBC	HGB	PLT	HCT
H1	273.4	7.75	232	997	72.2
H2	270.4	7.65	233	998	72
H3	267.0	7.55	233	998	72
L1	1.65	0.90	25	20	0.35
L2	1.55	0.89	24	19	0.33
L3	1.52	0.89	24	19	0.33
携带污染率(%)	0.05	0.15	0.48	0.10	0.03

2.5 线性范围验证结果 WBC、RBC、HGB、PLT、HCT 检测的线性相关系数 r^2 均大于 0.98,说明仪器具有良好的线性,见图 $1\sim5$ (见《国际检验医学杂志》网站主页"论文附件")。

3 讨 论

血液分析仪的应用已十分普及,而每台分析仪在投入临床使用前,从保证检验质量考虑,必须结合本部门的具体条件,用实验去评价检测系统的基本分析性能,包括精密度、正确度、线性等指标评价,只有真正认可检测系统的分析性能符合临床使用要求,才可以将检测系统用于常规[4]。本文通过对迈瑞 BC

• 临床研究 •

6800 血细胞分析仪的性能评价发现,该仪器 WBC、RBC、HGB、PLT、HCT 批内精密度分别为 1.97%、0.46%、0.40%、2.50%、0.62%,批间精密度分别为 1.51%、0.77%、0.49%、2.95%、0.75%,均小于 3%,表明该仪器稳定性很好,符合仪器的设计标准;正确度验证中,各项目偏倚均小于 2%,在 WS/T406-2012 要求内,正确度较好;5 个主要指标的携带污染率均小于 1%,不会因为临床高值标本影响低值标本的检测,能满足临床应用的要求;线性稀释结果显示 WBC、RBC、HGB、HCT 和 PLT 线性相关系数 R2 均大于 0.98,说明仪器具有良好的线性^[5];BC-6800 血细胞分析仪白细胞五分类计数结果重复性好、准确性较高。对特殊疾病(如血液病)患者,在血细胞形态异常或出现幼稚细胞时,计算机可发出警告,提示操作人员进行显微镜复查以确定细胞类型,从而提高了阳性检出率和工作效率^[6-7],且仪器为中文界面,操作简单、快速、成本低,适合各种大中型医院检验科使用。

参考文献

- [1] 刘纹,郑炘,刘晓敏. Sysmex XE-5000 血细胞分析仪应用性能评价分析[J]. 中国现代医生,2011,49(19):99-101.
- [2] 张旭凯,陆海峰. 五分类血液细胞分析仪的原理及应用[J]. 中国 医疗器械信息,2006,12(10):52-56.
- [3] 中华人民共和国卫生部. WS/T406-2012 临床血液学检验常规项目分析质量要求[S]. 北京:中国标准出版社,2013.
- [4] 张莉,吴炯,郭玮,等. 医学检验检测系统应用前的性能评价[J]. 检验医学,2006.21(6),560-563.
- [5] 朱新建,范菲楠,杨来智,等.迈瑞系列血细胞分析仪检测指标可 靠性评价分析[J].国际检验医学杂志,2010,31(10):1187-1189.
- [6] 韩昌波.使用血细胞分析仪应重视血细胞直方图的异常改变[J]. 国际检验医学杂志,2011,32(13):1522.
- [7] 姚东平,王祖蓉. 五分类血液分析仪对诊断白血病的价值[J]. 检验医学与临床,2011,8(5):578.

(收稿日期:2016-02-12)

品管圈在住院部急诊标本实验室样本周转时间影响研究

杨淑哲,刘成桂,曹登成 (成都市妇女儿童中心医院检验科,四川成都 610000)

摘 要:目的 探讨品管圈(QCC)活动对于住院部急诊标本实验室样本周转时间(TAT)合格率的影响。方法 分析影响实验室内 TAT 合格率主要原因,开展品管圈活动。选择 2014 年 1 月至 2014 年 6 月本科室住院部急诊标本 TAT 合格率为对照组, 2014 年 7 月至 2015 年 4 月本科室 TAT 合格率为观察组,以临床基础检验、血气分析、生化、免疫、常规凝血检测及免疫为组别,比较分析品管圈活动对于 TAT 合格率的影响。结果 通过品管圈活动,各专业组 TAT 合格率明显提高,具有统计学意义(P<0.05)。圈员解决问题能力,团队协作能力,QCC运用能力,工作积极性,工作愉悦感明显提高。结论 品管圈质量活动开展,有效提高急诊标本 TAT 合格率及科室解决问题能力。品管圈是一种值得在实验室推广使用的管理模式。

关键词:品管圈; 实验室样本周转时间; 住院部; 急诊标本

DOI: 10. 3969/j. issn. 1673-4130. 2016. 08. 054

文献标识码:A

文章编号:1673-4130(2016)08-1137-03

实验室样本周转时间(TAT)包含检测项目申请,样本采集,运输,检测及报告审核等环节[1]。狭义 TAT 指标本签收进入实验室到发出报告的时间,也称为实验室内 TAT[2]。本

研究 TAT 为实验室内 TAT。品管圈(QCC)是一种提倡以部门为中心,组成质量改善圈,通过学习,讨论解决工作中问题的一种质量持续改善机制^[2],2014年7月,本科室成立急诊标本