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The clinical value of unsupervised learning in the establishment of clinical laboratory autoverification rules
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Abstract: Objective To explore the clinical value of autoencoder machine algorithm in the establishment
of clinical laboratory autoverification rules. Methods Experimental models were generated by deep autoencod-
er algorithm. Dataset confirmed by manual review was received from clinical laboratory of Dazhou Central
Hospital, Sichuan Province. The items observed included serum total protein (TP),albumin (ALB) and immu-
noglobulin. The distribution characteristics of grouped data were analyzed in order to investigate the validity of
the model. Results By increasing the number of hidden layers and neurons in the appropriate range,and using
dropout technology,the MSE of final model could be positively affected. The rules of the final model, TP=
44.59—94.56 g/L,ALB=27.14—52.88 g/L.A/G=0.65—4.86,IgA=0.01—18.74 g/L.IgG=1. 34— 36. 81
g/L and IgM=0.001—10. 715 g/L,are very close to the atuoverification rules published by some laboratories,
and can effectively determine the extreme abnormal data of TP, ALB, A/G,and high level of Ig. This model
can determine 90% of the data without concern,and thus greatly improve the attention of inspectors to a small
number of abnormal data. Conclusion The autoencoder algorithm can generate positive value in the formula-
tion of autoverification rules in laboratory, but further interpretation of the model as well as in-depth analysis
is needed.
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