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Abstract: Clustered regularly interspaced short palindromic repeats and CRISPR associated proteins
(CRISPR/Cas)are an acquired immune system found in most bacteria and archaea. It has been a mature gene
editing tool, mainly used in the fields of gene cutting, gene therapy and modification. Recently, researchers
have continuously shifted the CRISPR/Cas technology from gene editing to nucleic acid testing, trying to de-
velop a portable, fast, low-cost, high sensitivity and strong specificty nucleic acid detection technology for
point-of-care testing. This paper reviews the latest applications of CRISPR/Cas technology in nucleic acid de-
tection and summarizes the potential challenges in the nucleic acids rapidly detecting field.
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