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全外显子组测序在遗传性疾病分子诊断中的应用
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  摘 要:全外显子组测序(WES)已经成为遗传性疾病实验诊断的主要技术。随着测序技术、测序仪器、生

物信息学分析方法和基因组学的快速发展,以及大规模人群数据库的建立,WES对遗传性疾病的诊断效能持

续提高。基于 WES测序数据的拷贝数变异(CNV)分析及对嵌合变异的检测进一步提高了 WES在遗传性疾

病中的诊断能力。通过完善WES检测的性能验证、加强WES检测全程的质量控制及强化WES实验室持续的

质量保证措施是保证 WES检测质量的主要手段。人工智能技术的应用、高质量遗传变异数据库的建设及人类

疾病表型的精细化等将进一步提升 WES在遗传性疾病分子诊断中的应用水平。
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Abstract:Whole
 

exome
 

sequencing(WES)
 

has
 

become
 

a
 

routine
 

genetic
 

testing
 

for
 

patients
 

suspected
 

of
 

inherited
 

diseases.Along
 

with
 

rapid
 

advancements
 

achieved
 

in
 

sequencing
 

technology,bioinformatics
 

and
 

ge-
nomic

 

medicine,and
 

availability
 

of
 

population-scale
 

genetic
 

variants
 

databases,the
 

diagnostic
 

utility
 

and
 

clini-
cal

 

utility
 

of
 

WES
 

in
 

laboratory
 

diagnosis
 

are
 

continually
 

improved.Furthermore,WES
 

data-based
 

copy
 

num-
ber

 

variation(CNV)
 

prediction
 

and
 

improved
 

detection
 

of
 

mosaic
 

variants
 

have
 

resulted
 

in
 

a
 

higher
 

diagnostic
 

yield
 

of
 

WES
 

in
 

inherited
 

disorders.Optimized
 

validation
 

and
 

stringent
 

quality
 

control
 

and
 

ongoing
 

quality
 

as-
surance

 

program
 

for
 

the
 

whole
 

process
 

of
 

WES
 

should
 

be
 

taken
 

to
 

consolidate
 

the
 

testing
 

quality
 

in
 

laborato-
ries

 

providing
 

WES
 

testing
 

service
 

in
 

clinical
 

setting.In
 

addition,application
 

of
 

artificial
 

intelligence
 

technolo-
gy

 

in
 

data
 

analysis,availability
 

of
 

high
 

quality
 

database
 

of
 

genetic
 

variants,and
 

refinement
 

of
 

human
 

disease/

phenotypes
 

would
 

significantly
 

promote
 

adaptation
 

of
 

WES
 

diagnostics
 

in
 

human
 

inherited
 

disorders.
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  遗传性疾病是影 响

人民群众、尤其是儿童健

康的 重 要 因 素。遗 传 性

疾病病种多、临床表现复

杂多 样、分 子 机 制 复 杂,
是临 床 诊 疗 工 作 中 的 一

大挑战。截止2018年9
月,人类孟德尔遗传在线

数据 库 (OMIM)收 录 的

已明 确 分 子 遗 传 机 制 的

疾病/表型已达6
 

259种,

涉及3
 

961个基因[1]。分子诊断是遗传性疾病实验诊

断的主要手段。目前传统分子诊断技术,如Sanger
测序、qPCR等仍在遗传性疾病实验诊断工作中广泛

应用。但随着下一代测序(NGS)技术的长足进步、测

序成本大幅降低、生物信息学分析能力大幅提升及大

规模人群遗传变异数据库的建立,多种高通量基因组

学诊断技术,如全外显子组测序(WES)等在遗传性疾

病的实验诊断中的应用日益广泛。

WES在临床诊断中的推广,一方面显著加快了

疾病致病基因的发现[2]、促进了对遗传性疾病分子遗

传机制的认识;另一方面也显著提升了遗传性疾病的
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诊断能力。但在临床实际应用过程中,WES对不同

疾病/表型的诊断效能、在不同类型遗传变异的检测

性能上仍存在较大的差异。与此同时,随着技术的进

一步完善、特别是生物信息学算法的进展,WES在遗

传性疾病实验诊断中出现了许多新情况,值得进一步

关注。

1 WES对各种类型基因变异的检测

1.1 单核苷酸变异(SNV)和小插入/缺失变异(In-
del) 据估计,95%致病性基因变异存在于人类基因

组中包含的约20
 

000个蛋白编码基因序列中[3],因此

WES可以高效地检测与遗传性疾病致病相关的罕见

SNV/Indel。迄今,已 有 大 量 研 究 分 析 评 估 了 WES
的诊断效能,发现 WES对遗传性疾病的临床分子诊

断率为25%~50%,在成年患者(大于18岁)中诊断

率稍低[4-9]。由于技术的快速发展和新致病基因的快

速发现,对 WES数据进行重分析能够进一步提升其

诊断率[10-11]。

WES检测SNV/Indel性能的高低除了受到实验

因素的影响外,还与生物信息学分析过程中所用的算

法 直 接 相 关。Bowtie、BWA、Novoalign、SOAP 及

MOSAIK等是临床 WES数据分析中常用的比对软

件,而GATK、SAMTools、FreeBayes及DeepVariant
等都是常用的变异识别软件。变异识别软件也与测

序平台和数据类型有关,GATK适合于Illumina平台

测序 数 据[12],分 析 WES 的 数 据 表 现 最 好[13];而

SAMTools更适合Ion
 

Torrent的测序数据[14],且更

适合分析全基因组测序(WGS)数据[13]。在 WES数

据的实际分析过程中,比对软件和变异识别软件组成

一个完整的变异识别流程(pipeline),结合下游分析,
最后可得到针对每个患者的分子诊断结论。但迄今

尚无任何一个比对软件和变异识别软件的组合能够

对所有变异进行可靠的识别,而盲目使用多种工具可

能导致更多错误的结果[15]。因此,正确评估各个工具

的性能,并将其组合成一个完整的变异识别流程对

WES的总 体 检 测 性 能 来 说 就 显 得 非 常 重 要。KU-
MARAN等[16]研究发现,针对 WES检测SNV/Indel
而言,BWA及Novoalign与DeepVariant的工具组合

表现出最佳的性能。

1.2 拷贝数变异(CNV) CNV是发育迟缓、智力障

碍、多发畸形及自闭症谱系障碍等疾病的重要致病原

因,已有多个国内外指南/专家共识建议染色体芯片

分析 (CMA)作 为 上 述 疾 病 的 一 线 分 子 诊 断 方

法[17-19]。随着 WES在遗传性疾病分子诊断中的广泛

应用,基于 WES测序数据进行CNV的检测已日益引

起重视。迄今,临床常用的软件/算 法 已 超 过20多

种,如 XHMM、CNVkit、Condors、ExomeDepth等。

其中大多数算法工具均根据测序片段的测序深度实

现CNV的检测,主要包括以下几个主要步骤:目标区

域测 序 深 度 计 算、归 一 化 (normalization)、片 段 化

(segmentation)及CNV检测。研究表明,任何一种算

法尽管存在各自的优势和特点,但总体而言其检测

CNV的性能尚有较大的局限性[20-21]。

PFUNDT等[22]对2
 

603例遗传性疾病临床病例

WES数据进行分析,检出123个致病性CNV,大小从

727
 

bp至15.3
 

Mb不 等,总 体 诊 断 率 提 高 约2%。

MARCHUK等[23]研究表明,利用ExomeDepth软件

对 WES数据分析CNV,对于高覆盖度区域的缺失型

CNV检测灵敏度可达89%,重复型CNV则为65%。

672例临床样本中,ExomeDepth分析CNV 可增 加

1.6%的诊断率。TSUCHIDA 等[24]则发现在 WES
检测SNV/Indel结 果 阴 性 的 癫 痫 患 者 中,致 病 性

CNV检出率高达10.7%(18/168),且最小的CNV大

小在10
 

kb以下,据此作者认为CNV分析应作为所

有临床 WES检测的有机组成部分。
各种工具对CNV分析受到多种因素的影响,如

参考样本的选择方法、参考样本的数量、测序深度的

均一性、目标区域的GC含量等。KUSMIREK等[25]

发现参 考 样 本 数 据 集 正 确 选 择 与 否 将 极 大 地 影 响

CNV的检出率(k均数法优于基于kNN的算法)。他

们的研究还表明,通过适当减少参考样本的数量,在

不降低检测敏感性的同时将增加特异性。RETTER-
ER等[26]发现有10.3%的样本噪音大,检出的CNV
数量异常增高,具体原因不详。与手工法相比,自动

化测序文库制备可以保证实验条件更加均一和稳定,
提高杂交效率、减少信号偏倚,能够更好保证CNV

 

的

检测。
值得注意的是,较之CMA,基于 WES数据分析

可以检出大量临床意义未明(VOUS)的CNV,如基因

启动子区、未翻译区、内含子区等的CNV。此类CNV
致病性的判断及明确其与临床疾病/表型的关系取决

于大量数据的积累及针对此类CNV建立科学的分类

判读标准和规则[27-28]。

1.3 嵌合变异 由于Sanger测序技术本身的局限

性,遗传性疾病中嵌合变异的检测一直是个难题,而

WES技术因其具有检测低丰度基因变异的能力显著

提高了 此 类 变 异 在 遗 传 性 疾 病,如 神 经 发 育 性 疾

病[29]、先天性心脏病[30]、自闭症[31-32]等中的检出率。

ACUNA-HIDALGO等[33]通过对50个核心家系中

检出的107个新生(de
 

novo)变异进行分析后发现,有

7个(6.5%)的所谓“新生”胚系变异实为嵌合变异。
同时通过进一步分析发现,在50例先证者中存在的

总计4
 

081个新生变异中4个变异同样能够在父母一
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方中检出。据此作者认为,迄今有相当一部分新生变

异可能是从其携带低水平嵌合变异的无症状父母遗

传而来。CAO等[34]通过对12
 

000个 WES样本的系

统研究发现,约有1.5%
 

的阳性病例是由于嵌合变异

而导致的,而在所有分析的家系中有0.3%的父母携

带了嵌合变异。

2 遗传性疾病分子诊断中 WES的性能验证和质量

管理

  WES属于高度复杂的实验诊断项目,主要可分

为湿实验(wet
 

bench)和干实验(dry
 

bench)。湿实验

是从样本基因组DNA提取纯化直至获得原始测序数

据的过程,而干实验涵盖了原始测序数据分析处理直

至过滤筛选出能够解释受检者临床表现/表型的候选

致病性或可能致病性变异的环节。WES应用于遗传

性疾病实验诊断须进行充分的性能验证,同时执行严

格的质量管理才能保证检测结果准确、可靠,才能为

遗传性疾病临床诊疗提供保障。

2.1 性能验证 作为临床实验诊断项目,任何一个

开展 WES检测的实验室必须对其进行充分的性能验

证以明确其特异度、敏感度、最低检测限、可报告范围

等指标,提高 WES检测的临床可信度[35-37]。WES是

高度复杂的实验诊断项目,涉及很多步骤,在项目开

发阶段可根据试剂盒、仪器及软件说明书或文献进行

经验性优化以实现其预设目标,但在性能验证阶段则

需对 WES的整个过程(湿实验和干实验)进行系统评

估。湿实验方面,标准品NA12878可作为实验样本,
该标准品的全基因组数据集已被充分研究并用于多

个基 于 NGS的 方 法 性 能 验 证;干 实 验 方 面,除 了

NA12878的数据集,HapMap、1000
 

Genome数据集

及另一个全基因组数据集(NA19240)也可作为虚拟

样本用于 WES的性能验证。

2.2 湿实验的质量管理 随着近十年来NGS技术

在临床的广泛应用,已初步探索建立了 NGS技术应

用的质量标准和规范[35-37],这些标准和规范同样适用

于 WES技术。临床 WES检测的质量管理主要分为

日常质 量 控 制 和 周 期 性 实 施 的 质 量 保 证 两 部 分。

WES日常质量控制中,在污染风险较高的实验步骤,
如上机测序前的测序文库准备过程中可以设立无模

板的空白对照防止环境DNA
 

的污染。在实际工作

中,通常在目标片段末端加上一段特异识别序列(bar-
code或index)以保证多个样本同时进行测序,但所用

的特异识别序列应有一个以上的碱基差异,以避免在

测序过程中发生错误导致样本混淆。在湿实验中,根

本原则是要在整个 WES过程中保证样本的完整和正

确。为实现这个目的,常用的手段包括利用单核苷酸

多态性(SNP)芯片[26]或利用其他技术通过对一组高

频SNP组合[38]进行基因分型从而完成样本“身份”
验证。

通过参加实验室外部的能力验证(PT)活动或其

他替代评估活动可以对 WES检测进行周期性、持续

性的质量保证。近两年来,国家卫生健康委员会临床

检验中心(NCCL)已开展遗传病胚系变异检测的室间

质评活动(EQA),这必将对促进临床实验室 WES的

质量管理发挥积极的促进作用。

2.3 干实验的质量管理 有效实施 WES干实验的

质量管理的基础是合理选择质量参数(quality
 

met-
rics)并合理设置相应的阈值,如平均测序深度、最低

测序 深 度、Q20、Q30等[35-36]。对 任 何 一 个 WES样

本,日常质量控制的首要目标是评估其是否符合设定

的质量参数阈值,由此可及时发现质量参数低于阈值

的 WES样本并及时增加测序数据量或重新实验以保

证后续下游分析结果的准确可靠。目前已有多种软

件工具 可 以 帮 助 完 成 此 类 常 规 质 控 工 作 任 务,如

ChronQC[39]。

WES干实验的持续质量保证措施包括建立相应

的工作程序进行软件版本管理并及时监控软件更新,
对参考序列和数据库进行周期性审核以确保正确的

分析结果,以及参与实验室外部的PT或EQA活动。
目前,可以通过计算机模拟生成涵盖各种变异类型、
数量 不 等 的 数 据 集 用 于 干 实 验 的 PT(即in

 

silico
 

PT),这种形式的PT与传统PT相比,测试的变异数

量和类型更多、更方便,成本也更低[40]。

3 不同 WES捕获试剂的差异

  已有大量的研究评估了 WES在遗传性疾病分子

诊断中的效能和个体实验室的检测性能表现,但对各

实验室产生的数据质量很少进行过系统比较,这对全

面了解临床实验室 WES应用现状无疑是十分不利

的。GOTWAY等[41]的研究表明,来自于不同实验室

的 WES数据在基因覆盖质量上呈现出很大的不一致

性。这种多个实验室间 WES基因覆盖度一致性低的

原因可能部分与不同的 WES捕获试剂盒有关。该研

究中 WES数据来自3家不同的临床实验室,分别使

用了罗氏 Nimblegen
 

VCRome
 

v2.0/IDT
 

xGen
 

Ex-
ome

 

Research
 

Panel
 

v1.0、罗氏Nimblegen
 

VCRome
 

v2.1及安捷伦SureSelect
 

XT2
 

All
 

Exon
 

v4/安捷伦

Clinical
 

Research
 

Exome捕获试剂盒。不同厂家的

WES捕获试剂盒由于基因覆盖范围(侧翼序列长度、

UTR)、探针类型及长度等的不同因此具有不同的侧

重点,自然会导致检出的基因变异、数量、质量等方面

存在差异[42]。GOTWAY等[41]在研究中发现,在来

自3家不同临床实验室的36个 WES样本中,测序完

整覆盖的CCDS基因数量最高可达15
 

196个,而最低
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的基因数量仅为3
 

139,覆盖最差的样本CCDS基因

数量仅为覆盖较好样本基因数量的四分之一。因此,
在 WES临床实际应用中,特别是在 WES检测结果阴

性的时候,需要重点关注临床疾病/表型密切相关致

病基因的覆盖水平,以免假阴性的发生。

4 结论与展望

  WES对遗传性疾病的实验诊断发挥了巨大的提

升作用,随着 WES
 

的临床应用日趋广泛和规范,需要

更加深入的研究其诊断效能和临床效能。与此同时,

CNV分析、AOH/UPD分析及短串联重复序列分析

等基于 WES测序数据的新型分析手段积极促进了

WES总体诊断率的提升,但上述这些新型分析手段

尚需进一步改善检测性能及深入的性能评估。

WES作为遗传性疾病实验诊断方法,除了本身

技术性能的进一步提升和系统评估外,还涉及系列基

础设施的建设,如外显子水平的CNV数据库和知识

库的建立、人工智能在基因变异过滤和筛选中的应

用、人类疾病表型的精确特征化等。随着 WES临床

推广应用日益普及和精准诊断需求的持续攀升,WES
必将极大促进遗传性疾病实验诊断。
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