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Abstract ; Objective To evaluate the differential expression characteristics of lipoprotein A (LPA) in hep-
atocellular carcinoma (HCC) ,and to determine the effect of LPA on the occurrence and prognosis of HCC.
Methods A total of 369 liver cancer tissue samples and 159 adjacent normal control samples obtained from
the Cancer Genome Atlas (TCGA) and normal tissue database of genotype-tissue expression (GTEx). By vir-
tue of Gene Expression Profiling Interactive Analysis (GEPIA) Web server, the differences of LPA mRNA
(LPA-001) were investigated among 33 cancer tissues,and the effect of LPA on the tumor grading and overall

survival (OS) in the patients with HCC was analyzed. The Pearson correlation coefficient method was adopted
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to analyze the correlation between LPA mRNA (LPA-001) with DNA mismatch repair genes (MLHI1,
MSH2,MSH6,PMS2 and EPCAM) and DNA methyltransferase (DNMT1,DNMT2,DNMT3A,DNMT3B).
The TCGA R software was used to conduct the gene ontology (GO) functional annotation and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment analysis of the cross-differentiated genes. Results

The LPA-001 expression level in HCC tissue was lower than that in adjacent normal liver tissue (P<C0. 05).
GEPIA verified the reliability of the above results. The total survival period in HCC patients of the high LPA
expression group was longer compared with the low LPA expression group,and the prognosis was better
(P<C0.05). The GO functional annotation and KEGG pathway enrichment analysis found that IPA may fur-
ther influence the occurrence,development and prognosis by the genes such as translation initiation, mRNA
catabolism,viral gene expression,viral transcription,focal adhesion,cell substrate adhesion,cell substrate con-
nection and ribosomal subunit,and the pathways such as ribosome,oxidative phosphorylation,fatty acid degra-
The LPA expression level

is lower in HCC tissue, which is negatively correlated to DNA mismatch repair genes and DNA methyltrans-

dation, PPAR signal pathway,chemical carcinogenesis and iron death. Conclusion

ferase,and may be closely related to the development and prognosis of HCC.
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