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Effect and mechanism of hypoxia induced mesenchymal stem cell exosomes in
regulating the growth and metastasis of gastric cancer cells”
DU Xiong',LI Yanzin',DUAN Xiaorui' ,KANG Ting*®
1. Department of Pathology ;2. Department of Oncology A f filiated Hospital of
Yan'an University sYan an s Shaanxi 716000, China

Abstract:Objective To investigate the effect and mechanism of mesenchymal stem cell exosomes on the
growth and metastasis of gastric cancer cells under hypoxic conditions. Methods Human bone marrow mes-
enchymal stem cells were cultured under normal and hypoxic conditions. The exosomes in the cell culture su-
pernatant were collected by differential centrifugation. Exosomes were identified by transmission electron mi-
croscopy and Western blot. The gastric cancer cells MGC-803 were separated from phosphate buffered saline
(PBS), normal mesenchymal stem cell exosomes (Nom-exo), hypoxia-induced mesenchymal stem cell exo-
somes (Hypo-exo) incubation, CCK8 was used to detect cell proliferation and flow cytometry was used to de-
tect apoptosis, Transwell cell methods were used to detect the cell migration and invasion ability. Western blot
was used to detect the expression levels of CD44,c-myc,Cyclin D1, p-B-catenin and B-catenin. Results Com-
pared with PBS group, the proliferation ability, migration and invasion ability of MGC-803 cells in Nom-exo
and Hypo-exo groups were significantly increased (P <C0. 05),the apoptosis level was significantly decreased
(P <C0. 05),and Wnt/B-catenin signaling pathway was significantly activated (P <C0. 05). Compared with
Nom-exo group,the proliferation ability, migration and invasion ability of MGC-803 cells in Hypo-exo groups
were significantly increased (P<C0.05),the apoptosis level was significantly decreased (P <C0.05),and Wnt/

B-catenin signaling pathway was significantly activated (P<C0. 05). Conclusion In hypoxic conditions, mesen-
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chymal stem cell exosomes can significantly promote the growth and metastasis of gastric cancer cells, the

mechanism is to promote the activation of Wnt/B-catenin signaling pathway.

Key words: hypoxia; mesenchymal stem cells;
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