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  摘 要:血小板在体外易激活,导致其质控困难,而纳米颗粒则具有小尺寸、高表面积比、生物相容性及可

修饰等特点,可通过包封血小板或多重修饰来抑制血小板聚集,从而为临床血小板检测提供稳定的质控品。该

文阐述了血小板-纳米颗粒复合体两种存在形式的特性、合成原理及其在医学领域的应用,研讨了血小板-纳米

颗粒复合体的制备方法并详细介绍其在癌症治疗、伤口愈合及免疫性疾病等领域的应用,并挖掘了血小板-纳米

颗粒复合体与外泌体-纳米颗粒复合体间的潜在关系。此外,该文还对纳米颗粒在血小板质控中未来研究方向

作出展望,强调了纳米颗粒的浓度、尺寸和表面修饰对血小板聚集的影响,为开发稳定可控的血小板质控品提

供了理论基础。
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Abstract:In

 

vitro,platelets
 

are
 

readily
 

activated,which
 

complicates
 

the
 

process
 

of
 

quality
 

control.In
 

con-
trast,nanoparticles

 

possess
 

distinct
 

advantages
 

due
 

to
 

their
 

small
 

size,high
 

surface
 

area
 

ratio,biocompatibili-
ty,and

 

modifiability.These
 

properties
 

enable
 

them
 

to
 

inhibit
 

platelet
 

aggregation
 

through
 

encapsulation
 

or
 

multi-modification,thereby
 

ensuring
 

the
 

stability
 

of
 

quality
 

control
 

products
 

for
 

clinical
 

platelet
 

assays.This
 

paper
 

delineates
 

the
 

properties
 

of
 

the
 

two
 

existent
 

forms
 

of
 

platelet-nanoparticle
 

complexes,their
 

synthesis
 

principles,and
 

their
 

applications
 

in
 

the
 

medical
 

field.The
 

text
 

goes
 

on
 

to
 

examine
 

the
 

preparation
 

methods
 

of
 

some
 

platelet-nanoparticle
 

complexes
 

and
 

their
 

applications
 

in
 

the
 

fields
 

of
 

cancer
 

therapy,wound
 

healing,and
 

immune
 

disorders.It
 

also
 

explores
 

the
 

potential
 

relationship
 

between
 

platelet-nanoparticle
 

complexes
 

and
 

exo-
some-nanoparticle

 

complexes.Additionally,the
 

future
 

research
 

directions
 

of
 

nanoparticles
 

in
 

platelet
 

plasmino-
genics

 

are
 

discussed
 

in
 

this
 

paper,emphasizing
 

the
 

effects
 

of
 

nanoparticle
 

concentration,size,and
 

surface
 

modi-
fication

 

on
 

platelet
 

aggregation.This
 

provides
 

a
 

theoretical
 

basis
 

for
 

the
 

development
 

of
 

stable
 

and
 

controllable
 

platelet
 

plasminogenics.
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words:nanoparticles; platelet-rich
 

plasma; platelet
 

aggregation

  血小板(PLT)源于骨髓中的巨核细胞,在血液循

环中释放[1],在外周血中含量丰富,正常计数(100~
300)×109/L[2],PLT的主要功能是保持止、凝血功能

正常[3],其数量与功能间的稳定对维持出血止血间的

平衡至关重要。临床上,PLT数量由血常规报告体

现,PLT功能在PLT聚集及黏附能力的测定中体现,

PLT数量及功能的测定结果为血栓性疾病、心脑血管

疾病及肿瘤的治疗提供了应用价值。
检测结果是疾病诊断与治疗的重要依据,其中,

PLT的质控问题至关重要。为保证检测结果准确性,
PLT质控是必需品。在此情况下,寻 找 临 床 上 使

PLT保持稳定状态并可控的质控物质是必要且有意
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义的。本文基于纳米递药系统研究的启发,综述了纳

米颗粒(NPs)的种类以及NPs与PLT间的相互作用

关系,为早日发现并创造出稳定可控的PLT质控品

提供理论基础。
NPs是指在三维空间内至少有一个维度处于纳

米尺寸(1~100
 

nm)之间或由它们作为基本单元而成

的材料[4]。近年来纳米材料成为各国研究的热点方

向之一,NPs的研究以及纳米器件的应用与开发逐步

成熟,纳米医学的出现也为医学领域提供了新的工具

与发展方向[5]。NPs有多种材质,包括脂质、蛋白质、
金属、无机物、有机聚合物等,NPs体积小,有多方面

研究将NPs与血液中同样体积较小的PLT联系起来

构成PLT-NPs复合体,复合体有两种形态:(1)NPs
包封PLT;(2)PLT膜仿生 NPs。二者目的不同,结
构也不同。
1 PLT体外稳定性研究

  PLT离开人体,受温度、时间、离心力等多因素影

响,在体外储存时易发生变化。现阶段PLT质控仅

局限于数量形态方向,而对PLT体外功能状态变化

尚未作出要求。有研究团队对PLT保存过程中代谢

指标及体外特性的变化进行了系统监测,检测结果表

明,随时间增加,PLT活化增强,PLT表面P-选择素

(CD62P)表达呈上升趋势,PLT形态也逐渐发生变

化,如“伸出伪足”、致使PLT破坏、变形PLT增多

等[6]。有文献报道在有关体外PLT激活机制中发

现,体外储存20
 

min后,CD62P水平较最初离体测定

水平升高,在加入 P2Y12及 P2Y1受体阻滞剂后,
CD62P较体外储存20

 

min组呈现下降趋势,该研究

亦表明PLT易受ADP诱导激活[7-8]。胡晓蕾等[9]在

PLT检验前质量控制相关参数一文中监测PLT活化

相关参数,包括平均血小板体积(MPV)、血小板分布

宽度(PDW)和
 

CD62P。监测结果表明,室温环境内,
1

 

h较0.5
 

h相比,CD62P上升了135.41%,MPV与

PDW也呈现不同程度的升高,二者作为间接反映

PLT活化的参数,皆证明,血样离体后,PLT发生不

同程度的活化,导致PLT功能的检测结果发生变化。
2 纳米颗粒包封PLT的特性、原理及应用

2.1 纳米颗粒包封PLT的特性 当血管受到损坏

时,内皮基质暴露并释放血管活性物质,包括PLT活

化因子,激活处于静息状态的PLT,PLT活化后表面

表达大量CD62P,一项与抗肿瘤药物研发有关的研究

项目指出PLT聚集体能够协助循环肿瘤细胞逃避免

疫监 视,现 有 实 验 表 明 通 过 抑 制 活 化 PLT 表 面

CD62P受体以抑制PLT聚集与转移,进而抑制肿瘤

发展[10-13]。PSN肽(一种
 

P-选择素靶向肽)强烈地靶

向结合CD62P,经PSN肽修饰的NPs,可以靶向结合

至PLT表面[14]。该团队通过在 NPs内部搭载抗

PLT剂替格瑞洛,药物释放后可抑制局部PLT聚集

与转移。有研究表明,由PSN肽修饰的搭载替格瑞

洛 的 岩 藻 依 聚 糖 NPs 可 使 PLT 聚 集 减 少 约

78.00%,也降低了PLT对4T1细胞的黏附[15]。通

过在NPs上构建特异靶向PLT的配体,与PLT表面

丰富的受体结合,释放抑制PLT聚集物质的一系列

反应,最终抑制PLT聚集。
利用PLT参与癌症的发生发展这一特点,通过

NPs搭载药物由配体靶向PLT抑制PLT聚集的方

法在相关癌症的治疗中已有应用,但 NPs包封PLT
的制备技术尚不成熟,临床上未发现大量推广的方

法。随着研究不断推进,发现单一的 NPs进入体内

后,迅速地被免疫系统识别、清除。生物膜表面存在

许多自身受体,可以对NPs进行“伪装”[16-17]。
2.2 纳米颗粒包封PLT合成原理 根据NPs包封

技术实现NPs包封PLT,NPs包封技术目前常用于

递药系统中药物的装载,最常用的包括脂基 NPs(脂
质体、脂质纳米粒等)[5]与聚合物纳米载体[18]。其中

聚合物纳米载体具有生物可降解性、生物相容性、水
溶性、贮存稳定等物理化学性质,也可人为地进行表

面修饰,减少相关副作用,被认为是理想的包封材

料[19]。利用药物的亲水性、疏水性和正负电荷间作用

等,通过将药物嵌入聚合物基质或封装于聚合物涂层

内的储库中。同样地,PLT表面存在负电荷,本文设

想通过电荷间的相互作用,使 NPs均匀的包覆在

PLT外或在PLT表面形成保护膜,防止PLT异常所

致的疾病中发生PLT过度活化或聚集所引起的血栓

或血管堵塞等情况。
迄今为止,自组装NPs在化学、材料和生物科学

以及医疗等各个领域都表现出了巨大的潜力[20-21]。
自组装是分子自发组织或聚集成稳定结构的过程。
它由非共价相互作用力驱动,例如疏水作用、静电力

结合、氢键等,制造自组装NPs的方法涉及将疏水聚

合物改性形成两亲性聚合物并自发组装成具有壳-核
结构和可控性质的NPs[22-23]。壳-核纳米结构在捕获

疏水有效载荷(如蛋白质和荧光探针)方面表现出显

著的效率。在一定距离内带有相反电荷的两个分子

或聚合物间发生的静电自组装,已被应用于制备可生

物降解的NPs[24]。最终,带相反电荷的聚电解质的混

合物形成可逆性的静电链,物质间发生自发结合。静

电作用下的自组装NPs的制备既方便,又避免了使用

潜在有毒的共价交联剂,同时还保持了胶体颗粒的结

构完整性[25]。通过静电力结合形成的NPs可用于递

送疏水性物质[26]。氢键是氢受体和供体之间独特的

偶极-偶极吸引力,氢键通常在液态水中形成,在维持

物质稳定方面发挥着重要作用[27-28]。氢键自组装已

经在超分子聚合物和肽纤维领域得到了广泛的应用,
可以进一步扩展到NPs的组装[29-30]。

一些具有三维聚合物网络结构的物理或者化学

交联的高分子材料,其具有高亲水性、良好的生物相

容性及结构易于功能化的特征。材料的高孔隙率、高
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比表面积、可降解性以及稳定的机械性能使其成为体

内小分子物质递送和包封的理想载体材料[31-32]。有

研究构建了动态网络聚合物,并将PLT负载于其内

部,实现了聚合物对PLT的包封。包封后的聚合物

颗粒并未引起PLT的过度活化或聚集。实验结果证

实,该支架可以实现PLT生物活性因子的缓释并加

以保护。此外,结果还表明此支架可以增加PLT活

性,促进体外细胞的增殖[33-34]。
2.3 纳米颗粒包封PLT应用现状 透明质酸、壳聚

糖、聚乙二醇等天然高分子水凝胶材料已被研究用于

PLT的搭载。在皮肤再生相关的研究中,LI等考虑

到纳米材料能够增强组织再生性,将PLT锚定于具

有多个动态共价键的纳米复合水凝胶网络中,从而增

强其机械性能,提高PLT稳定性,并维持PLT的连

续递送。该团队基于改性的透明质酸钠和纤维素纳

米晶体,开发了透明质酸纳米复合水凝胶。在纳米复

合水凝胶中,PLT表面的氨基与水凝胶的醛基等可原

位形成酰腙键、二硫键、亚胺键等化学键,这些化学键

协同促进皮肤伤口的愈合[35-38]。试验结果表明水凝

胶对PLT具有良好的保护和缓释作用。在 QIAN
等[33]有关糖尿病伤口愈合的研究中,构建了聚乙二

醇/壳聚糖 动 态 水 凝 胶 支 架,并 将 富 血 小 板 血 浆

(PRP)搭载其中,在激光扫描共聚焦显微镜下,搭载

有PRP的水凝胶支架表现出与纯水凝胶相同的纤维

结构。在后续的动物实验中,该支架未引起毒性生理

反应,也未引起PLT过度聚集,反而保护了PRP及其

衍生生物分子的活性。
水凝胶包封PLT后,表现出比纯水凝胶更高的

孔隙率和更大的比表面积,推测这种改变是由于PLT
的加入所致。曾有研究表明,在水凝胶冷冻干燥过程

中,内部多孔结构的形成高度依赖于冰核的形成,
PLT中含有多种生物活性因子或纤维连接蛋白,这些

分子溶于以水为介质的水凝胶过程中可能改变了液

态水凝胶的结构分布,形成了较大的多孔结构可以充

分地容纳PLT[39]。
ZHANG等[40]在兔软骨缺损模型的研究中,将

PRP添加到PLGA支架中研究其对软骨缺损重建的

影响,该团队通过双层法制备PLGA多孔支架,此支

架具有不同的孔径用以装载PRP。在所有实验组中,
添加了PRP/PLGA的组表现出最佳的兔软骨修复效

果,且新组织形成量最多。有研究表明,如果PRP与

聚乳酸-软骨支架组合,则无需凝血酶对PLT进行外

源性激活即可释放生长因子[41]。此外,关于PLGA
大小是否与PLT活化有关的研究表明,较小的PL-
GA-PEG

 

NPs(如112
 

nm)存在引起PLT活化的趋

势,而较大的PLGA-PEG
 

NPs(如345
 

nm)则表现出

延迟PLT聚集的趋势[42]。在一般浓度下,不同尺寸

的PLGA-PEG
 

NPs对 PLT 聚 集 几 乎 没 有 影 响。
NPs的尺寸既不影响PLT活化,也不抑制凝血酶等

激活剂引起的PLT聚集。
随着研究的不断推进,研究人员发现,NPs的材

料不仅会影响PLT的聚集与活化效果,其浓度和直

径也会对PLT与其的作用程度产生影响。以聚乳酸-
聚乙二醇(PLGA-PEG)为例,不同粒径和浓度的NPs
与PLT的作用效果存在差异。探究差异性的实验结

果显示:当NPs浓度大于0.25
 

mg/mL且尺寸大于

321
 

nm 时,会抑制 PLT 聚集。此外,NPs与静息

PLT共孵育时,未发现PLT活化特征。然而,加入激

活剂ADP后,PLT被激活,且与 NPs共孵育后未发

现对其活化的抑制作用。无论PLGA-PEG的尺寸和

浓度如何变化,均不对PLT的活化产生影响[43]。也

有研究提示,当NPs处于血浆这一复杂环境中时,可
能会被血清蛋白包被,从而形成“蛋白质冠”。这可能

改变NPs表面性质,促进它们与血液成分的相互作

用,导致PLT反应异常或NPs清除途径的变化[44]
 

。
在另一项研究中,研究人员探究了体外条件下

PLGA与CS-PLGA对PLT活化和聚集的影响[45]。
在此研究中,实验组加入浓度高达500

 

μg/mL的PL-
GA或 CS-PLGA 孵育静息 PLT,证实其不会诱导

PLT聚集。研究人员选择了浓度为2
 

μg/mL的胶

原,以及0.01~100.00
 

μg/mL的PLGA和CS-PL-
GA,以探究 NPs对胶原诱导的PLT聚集的抑制能

力。结果表明,浓度至少为10
 

μg/mL的PLGA以及

所有浓度的CS-PLGA均能显著抑制胶原蛋白诱导的

PLT聚集。此外,NPs对胶原诱导的PLT聚集的抑

制作用呈浓度依赖性。研究人员用流式细胞术研究

了PLGA、CS-PLGA对PLT表面受体表达的影响,
包括PLT表面CD62P和GPⅡb/Ⅲa受体,前者支持

PLT与白细胞的聚集,后者支持PLT间的聚集[46]。
胶原蛋白显著增加了两种受体的表达丰度,而测试的

NPs均未显著增加这两种受体的丰度。这表明 NPs
并未引起PLT活化。PLGA 显著降低了胶原活化

PLT中CD62P的表达丰度,但未显著降低胶原活化

PLT中GPⅡb/Ⅲa的表达丰度。这可能是由于NPs
介导的胶原结合减少和/或PLT之间接触减少所致。
这些结果表明,NPs并未引起PLT的活化。

上述实验均表明,在软骨再生等研究中,水凝胶

和PLGA等材料包封PLT的技术已相对成熟。此

外,这些研究还深入探讨了NPs的浓度对PLT活化

与聚集的影响。这些结果表明,特定条件下,NPs不

会引起PLT的活化。高浓度的NPs无需依赖激动剂

即可抑制PLT聚集,然而对于处于活化状态的PLT,
NPs对其表面表达的受体的抑制程度相对较弱。

在一项与抑制PLT黏附相关的研究中,发现三

肽类水凝胶因子可以在PLT表面选择性自组装。三

肽类水凝胶因子可以通过配体-受体相互作用选择性

地结合到PLT表面,引发NPs自组装和PLT表面周

围的水凝胶化,将PLT包封。由于所有肽溶液的反
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电势均为负值,PLT周围的三肽类水凝胶薄层可使处

理后PLT的反电势表现得更低,通过负电荷排斥防

止PLT聚集[47]。
在另一项研究中,研究人员通过在壳聚糖/大豆

分离蛋白(CS-n)的表面接枝肝素,制备了一系列肝素

化壳聚糖/大豆分离蛋白(HCS-n)膜[48]。在体外血液

相容性测试中,表面接枝的肝素改善了膜的血液相容

性。由于PLT与带负电荷的肝素之间的静电排斥可

降低PLT黏附,HCS-n上黏附的PLT数量明显减

少,黏附的PLT主要为球形,且呈分离状态,无伪足

形成,表明表面肝素化有利于降低PLT黏附,使黏附

的PLT处于非活性状态。这种接枝肝素的改性减少

PLT黏附,减少血栓形成和溶血[49]。
在上述研究开展的同时也对NPs包封PLT的生

物安全性进行了评定。评定内容包括是否存在生物

毒性、诱发炎症、导致自身免疫及诱发血栓的形成等。
研究人员通过构建动物模型,在动物实验中发现,与
单独给予药物治疗相比,大部分NPs包封PLT并未

存在或引发以上非生物安全性问题。结果见表1。

表1  NPs包封PLT体外生物安全性测试结果

项目 疾病诊疗 特性 靶向性 生物安全性 细胞毒性 年份

Nap-FFGRGD 血栓 (1)抑制PLT聚集 良好 良好 未发现 2012[47]

HCS-n 血栓 (1)减少PLT黏附 良好 良好 未发现 2015[48]

PSN-PEG-SS-PTX4 TNBC/肺或肝转移

(1)抑制原发性三阴乳腺 癌

(TNBC)发展;(2)抑制TNBC
肺转移

良好 良好 未发现 2019[14]

CBPGCTS-SF@PRP
 

糖尿病伤口愈合
(1)保护PLT;(2)促进血管生

成
良好 良好 未发现 2020[33]

AHA/DHA/oxi-CNC@
 

PRP 伤口愈合、组织再生
(1)保护PLT;(2)持续释放生

长因子、促进细胞增殖
良好 良好 未发现 2022[37]

PSN-NP@TGL/CXB TNBC
(1)下调肿瘤转移相关炎症因

子;(2)抑制PLT聚集
良好 良好 未发现 2022[15]

  这一部分提示笔者可以在后续的研究中,通过选

择方便修饰的纳米材料,来达到抑制PLT黏附或聚

集的目的。PLT作为表面呈现负电荷与疏水性质的

细胞,也可以通过疏水作用或静电吸附等与纳米材料

结合,无论是NPs的包封还是纳米材料在PLT表面

进行自组装,都可以实现保护PLT、抑制其聚集的

效果。
NPs作为小分子生物相容性物质,具有可降解性

较高、孔隙率较大等特点,也拥有容纳小分子物质或

生物活性分子的能力。上述研究证实,NPs具有包封

PLT的能力,其体内外生物安全性也得到多方面的证

实。在血液这一复杂环境中,NPs不影响PLT活化

并在适宜的尺寸和浓度下,可抑制PLT的聚集。
3 PLT膜仿生纳米颗粒的特性、原理及应用

3.1 PLT膜仿生NPs的特性 近十年来,仿生递药

系统一直由研究者们进行深层次地更新迭代。生物

膜作为自体物质,包裹药物等“异体”物质,可以延长

药物体内循环时间、防止药物被巨核细胞等吞噬,避
免不良免疫反应的发生,影响药物疗效。仿生NPs通

过细胞膜涂层纳米技术,提取细胞膜后,通过物理挤

压法、超声法和微流控电穿孔等将提取的细胞膜覆盖

在NPs表面[50-51]。通过重复的微型挤出技术制作出

的NPs和提取的细胞膜混合物进行包埋制成生物膜

包裹的NPs。仿生NPs多采用“自上而下”的构建方

式,具有经典的“核壳结构”,即细胞膜包裹NPs,NPs
内部搭载药物或生物活性分子,这种复杂的核壳结构

赋予 NPs体内循环时间长、生物相容性、靶向高等

优点。
血小板膜(PMN)表面存在多种膜糖蛋白,静息

PLT内部细胞器储存各种蛋白质与生物活性因子,相
互之间作用维持体内出血止血间平衡。除了参与止

血与血栓的形成外,PLT释放生长因子,调节炎症的

发生发展、参与机体免疫防御、协助癌细胞的转移等。
根据PLT广泛的生物功能,研究者们推测由PMN包

裹的药物递送系统在疾病的诊疗中具有巨大的潜力,
目前PMN仿生NPs

 

(PNPs)在心血管疾病的治疗研

究中得到了高效的开展并发挥其作用[52-53]。
3.2 血小板膜仿生纳米颗粒合成原理 薄膜挤压法

借助挤压器通过纳米级聚碳酸酯多孔膜反复挤压,利
用机械力使NPs与PMN相融合,该方法工艺简便,
但难以大规模制备。

超声(US)增强PMN通透性,US施加的机械压

力通过中断脂质和蛋白质的运动和组织而显著影响

PMN的形态和流动性。在 US照射下,剪切力和辐

射力施加于PMN,不可避免地影响细胞骨架,导致

“细胞断裂”和细胞骨架解聚,促进PMN的包覆,但是

该方法生成的载体颗粒均一性较差。虽然这两种方

法可以有效地获得 PNPs,但是超声处理可能破坏
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NPs核心,并且机械挤出在通过多孔膜挤出硬颗粒的

过程中需要一定大小的外力。
微流控装置,具有高通量、定量形式和平行依赖

性的优点,已经成为合成多功能纳米材料的有希望的

平台。微流控电穿孔法将载体各组分在Y形通道中

完全混合,并流过电穿孔区。两电极间的电脉冲能有

效地促进NPs进入PMN内部,制备出性质稳定、包
覆率高的纳米载体。
3.3 血小板膜仿生纳米颗粒应用现状 仿生PNPs
在递药系统中有着更广泛的研究与应用经验。现阶

段,肿瘤与PLT在体内的相互作用已被广泛研究,有
研究发现PLT在肿瘤侵袭、转移过程中起着关键作

用[54]。研究 人 员 构 建 了 一 种 PMN 包 裹 的 PNP-
R848NPs。将其局部递送至结直肠肿瘤模型中发现,
PNP-R848增强了肿瘤内部免疫活化,最终引起小鼠

模型内部肿瘤完全消退,并抵抗相同肿瘤二次攻击。
PNP-R848在侵袭性乳腺癌模型中,延迟肿瘤生长并

抑制其肺转移。在A549荷瘤小鼠肺癌模型中的研究

显示,注射PMN包被的PM/PLGA/DTX后,48
 

h内

在肿瘤组织中可检测到50%以上的药物,与未包被的

NPs相比,经PMN包被的NPs在肿瘤组织中的药物

浓度是未包被的2倍以上,证实了经PMN 包被后

NPs的有效靶向作用。在另一项与仿生PNPs结合

位点有关的研究中,通过构建 TRAIL-Dox-PM-NV,
PM-NV利用PLT与癌细胞之间的特异性亲和性,其
选择性地结合 MDA-MB-231细胞表面上过表达的

CD
 

44受体,有效地将TRAIL递送至癌细胞膜,PM-
NV具有酸响应性包封基质,可在胞吞作用后消化,增
强Dox在细胞核处的积聚,同时激活外在与内在凋亡

途径[55]。用TRAIL-Dox-PM-NV处理后,肿瘤细胞

体积变小,通过PLT表面CD62P的捕获,血液中循

环肿瘤细 胞 也 得 以 清 除。ZHU 等[56]发 现 小 檗 碱

(BBR)治疗心肌梗死的机制,由于大量的PLT存在

梗死的心肌处,因此构建了PMN包覆的PLGA-NPs
(BBR@PLGA@PLT

 

NPs),它可以靶向至心肌梗死

部位,并持续递送BBR。在大鼠心肌梗死后第28天,
BBR@PLGA@PLT

 

组减少炎性巨噬细胞和凋亡细

胞的数量,显示出对心脏功能的保护作用。此外,
BBR@PLGA@PLT

 

组在组织学和酶学上对主要器

官均无明显影响。
目前PLT被认为是先天性免疫反应和适应性免

疫反应的关键角色,它能够与几乎所有已知的免疫细

胞相互作用[57]。在自身免疫性疾病的各种常规治疗

策略中,常存在药物蓄积差和非特异性生物分布等问

题。为此,有研究利用PLT与自身免疫性疾病间的

内在联系,通过仿生PNPs对其进行治疗。在类风湿

性关节炎的治疗中,研究人员配制了载有一种免疫抑

制剂(FK506)的仿生PMN-PLGA-NPs。在体外实验

中,PMN上的GPVI受体与滑膜组织中的 MH7A细

胞内组分Ⅳ型胶原相互结合。体内生物分布研究表

明,与裸NPs相比,PNPs在发炎关节部位的累积2.1
倍。与游离药物和裸NPs相比,负载FK506的PNPs
更加有效地抑制了小鼠后肢的类风湿性关节炎的发

展[58]。在另一项与免疫性PLT减少性紫癜治疗有关

的研究中,研究人员构建PNPs,在抗体诱导的免疫性

PLT减少症的CD-1小鼠模型中,通过研究出血时

间,评估体内治疗效果,实验结果表明用PNPs处理

的小鼠其抗PLT抗体的释放受到抑制,健康PLT的

清除率降低[59]。
仿生NPs的研究与应用越来越广泛,由于PNPs

具有增加药物在循环系统内的潴留时间以及避免被

巨噬细胞吞噬等优点,其应用逐渐增多。但是在疾病

的治疗方面,PNPs作为药物传递载体仍有需要进一

步发掘,例如制造仿生PNPs过程的有效复制问题以

及推导出可靠的保持提取细胞膜完整性的方法等。
也要注意在大批量生产过程中出现问题,导致难以控

制所需的特征,如颗粒大小、靶向性及体内分布等[60]。
此外,应在不同的储存条件下进行长期稳定性研究,
以验证储存时的有效性和稳定性。
4 PLT-外泌体(Exo)复合物

  Exo是直径为30~200
 

nm,由细胞分泌的纳米级

细胞外囊泡,具有与细胞相同的拓扑结构,携带核酸、
蛋白质、脂质等生物活性物质。Exo在细胞间信号传

导、免疫应答、细胞稳态及自噬等发挥着重要作用。
研究人员发现与脂质体、NPs等工业合成载体相比,
Exo作为一种天然衍生药物传递载体在生物分布、生
物降解性、免疫相容性和生物毒性方面表现得更好,
在疾病的治疗环节成为有效的递送工具[64]。

研究人员通过电穿孔法将 Dox装载入活化的

PLT源性Exo中,构成PLT-Exo-Dox并在TNBC细

胞(MDA-MB-231细胞)模型中开展实验。结果显示

PLT-Exo-Dox靶向至 MDA-MB-231细胞,促进其摄

取到细胞中,降低细胞活力并加速细胞凋亡。在这项

研究中已证明了使用从活化的PLT获得的Exo作为

新的药物递送系统的可行性[65]。
同时,生物膜仿生 NPs的应用也为工程Exo提

供了理论基础。有研究认为 MSCs来源的Exo具有

治疗动脉粥样硬化的巨大潜力[66]。在动脉粥样硬化

的治疗中,研究人员采用膜融合技术,将间充质干细

胞(MSCs)-Exo与天然血小板膜融合,制备斑块靶向

给药系统。体内实验表明,MSC-ExoP可通过减少脂

质沉积、减少坏死核面积、增加胶原含量等途径,显著

抑制动脉粥样硬化的进展。体外实验进一步证明,泡
沫细胞对 MSC-ExoP的摄取显著增加,Exo在平滑肌

细胞中自噬激活,泡沫细胞的增殖、迁移和泡沫形成

受到抑制[67]。研究人员将 MSC 衍生的 ENVs与

PMN融合构建P-ENVs。实验结果表明,基于血小板

对动脉粥样硬化斑块的固有靶向能力,与未修饰的
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ENVs相比,P-ENVs在动脉粥样硬化动脉瘤中积聚

更多,靶向性更强同时使不良反应最小化[68]。
 

上述实验结果证明,与合成 PNPs相比,天然

PLT-ENVs具有降低毒性、改善生物相容性和增强穿

越生物屏障的能力等优点,PLT-ENVs仿生给药系统

作为一种新型安全有效的靶向药物递送系统,在动脉

粥样硬化性心血管疾病乃至其他疾病的治疗中具有

广阔的临床应用前景。但与PLT-ENVs相比,PNPs

尺寸更小,且PLT-ENVs的应用存有问题需要进一

步验证,包 括(1)
 

PLT-ENVs的 分 离 与 纯 化;(2)
 

PLT-ENVs的装载效率;(3)
 

PLT-ENVs体内生物分

布等。不同于工业纳米靶向递药系统,Exo载药靶向

递药系统具有更好的生物相容性和低免疫原性。虽

然 有 研 究 已 选 择 免 疫 亲 和 捕 获 法 来 获 取 大 量 的

Exo[69],但是提取方法在临床应用中的转化受到各种

限制,仍需进一步探讨。

表2  PLT膜仿生NPs体外生物安全性测试结果

项目 疾病诊疗 特性 靶向性 生物安全性 细胞毒性 年份

TRAIL-Dox-PM-NV
 

乳腺癌 (1)诱导肿瘤细胞外源性凋亡 良好 良好 未发现 2015[55]

PNP
免疫性PLT减少性

紫癜

(1)特异性结合抗PLT自身

抗体;(2)中和抗PLT抗体
良好 良好 未发现 2016[60]

FK506-PM-NV 类风湿性关节炎 (1)增加病变部位药物蓄积量 良好 良好 未发现 2018[68]

BBR@PLGA@PLT
 

NPs 心肌梗死
(1)缓解心肌炎症;(2)促进梗

死心肌血管生成
良好 良好 未发现 2023[56]

PMVs@TGF-β1-siRNA
 

NP
 急性肾损伤/慢性肾

脏纤维化

(1)阻 断 TGF-β1/Smad
 

3通

路、降 低 TGF-β1表 达 水 平;
(2)减轻肾脏炎症和纤维化

良好 良好 未发现 2024[61]

BSA@LIR-PMF
糖尿病动脉粥样硬

化

(1)改善ox-LDL诱导细胞氧

化磷酸化;(2)抑制糖尿病并

发症发生

良好 良好 未发现 2024[62]

cRGD-platelet-
 

NPs
 动脉粥样硬化/强直

性脊柱炎

(1)降低血清与主动脉组织中

的炎症标志物;(2)抑制
 

NF-
κB

 

信号通路;(3)减少强直性

脊柱炎斑块形成

良好 良好 未发现 2024[63]

5 小  结

  NPs不仅在药物递送系统发挥重要作用,还出现

在成像诊断中。在NPs成像的研究中,通常使用由无

机材料制成的NPs,包括氧化铁、二氧化硅等,通过磁

共振成像(MRI)进行成像试验,其机制依赖纵向弛豫

时间(T1)与横向弛豫时间(T2)加权成像。T1加权

成像为纳米粒子缩短周围水质子的纵向T1,从而在

图像中产生高信号(亮信号),通常用于显示解剖结

构,且信号增强的区域更容易识别。T2加权成像为

纳米粒子缩短周围水质子的T2,从而在图像中产生

低信号(暗信号)。这种成像方式对磁场不均匀性敏

感,适合检测微小结构或病变。
研 究 人 员 设 计 双 对 比 超 小 氧 化 铁 NPs

(DCIONs),其可以同时提供两种对比信号进行成像。
并在DCIONs表面修饰单链抗体,靶向活化PLT的

GPⅡb/Ⅲa受体,使得DCIONs能够特异性地结合到

血栓部位[70]。纳米粒子结合到血栓表面后,在T1加

权图像中表现为血栓周围的亮环(高信号)。在T2加

权图像中,纳米粒子结合的区域表现为血栓周围的暗

环(低信号)。随着时间的推进,可观察到纳米粒子在

血栓部位的信号变化。DCIONs具有独特的双对比

特性,这种双重信号增强了成像的对比度和诊断的准

确性。与传统的侵入性诊断方法(如冠状动脉造影)
相比,这种NPs成像技术具有非侵入性,减少了患者

的风险。临床现存多种NPs通过单一的信号加权图

像进行诊断,如超顺磁性氧化铁NPs
 

(SPIONs)等,但
是单一信号敏感性低,双信号在低浓度下也能产生显

著的变化,适合检测微小血栓,并对血栓的发生发展

作出及时的预测与治疗。
PLT数量及功能的检测作为血常规的重要监测

项目之一,在血栓性疾病及凝血疾病等方面发挥重要

作用。PLT在体外极易激活,为保证检测结果的准确

性、可靠性,PLT质控品的研发策略仍在探索中。在

过去的十年间,纳米医学领域制造各种NPs实现医疗

中的应用,利用NPs独有的小尺寸、高表面积比与高

渗透性的特点,在药物运输,病理诊断及成像等方面

进行实践。NPs可以通过电荷或受体与配体的相互

作用构成核壳结构,有效的包载药物并实现药物的精

准输送。笔者进行猜想,是否可以利用这一特点包封

PLT,实现PLT“隔离”,避免其过度聚集,为临床检测

作基础保障。进行大量览阅成熟的NPs技术相关研

究后,本文发现NPs直接包封PLT在目前的纳米技
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术中是无法实现的,其原因涉及NPs尺寸较小,易被

PLT吞噬等,但是多个 NPs通过受体连接,将PLT
围绕实现隔离,是可以实现的。
PLT活化与聚集的机制涉及激动剂与受体的作

用以及凝血的“瀑布学说”等,NPs与PLT间的作用

很大程度上依赖于NPs的材料、大小、电荷电位等理

化性质,NPs浓度的改变也参与其中,抑制或是引发

PLT聚集的机制仍需深入研究。现有的作为递药系

统的仿生NPs已有大量研究,并在肿瘤及自身免疫性

疾病的治疗中取得了成果。证实了体内应用NPs的

可行性与生物安全性,也为NPs包封PLT提供了改

造思路。
本文讨论了纳米材料与PLT间相互作用,其中

水凝胶、壳聚糖、PLGA 包封PLT的技术已相对成

熟,并在骨再生或伤口愈合领域得到证实。随着科技

的不断发展,NPs自组装与表面修饰技术在抑制PLT
聚集方面展开研究。但是NPs的浓度与电荷是如何

影响PLT聚集以及纳米材料是否与PLT表面相应

受体发生关联及其机制仍未得到进一步的探索。本

文还对PLT-ENVs及应用作简要说明,与PLT-NPs
相比,Exo具有更低的免疫原性,但是PLT-ENVs制

备过程繁杂,临床转化仍存在难题。本文通过前人列

举的NPs与PLT间的联系对NPs包封PLT并抑制

其聚集作出展望,为后一步的 NPs-PLT复合体的实

践以及PLT质控品的研发作出相应的理论基础。
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