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  摘 要:靶向蛋白降解(TPD)技术是一种通过招募细胞内蛋白酶体或溶酶体系

统清除致病蛋白的新技术,为疾病治疗提供了新策略。与传统治疗方法相比,TPD
 

具有作用于“不可成药”靶点、克服耐药性、高选择性等优势,其中,蛋白水解靶向嵌合

体(PROTAC)和分子胶是其代表性方法,在E3连接酶拓展、接头设计及递送系统等

方面均取得重大进展,并逐步进入临床研究。PROTAC与分子胶不仅能够靶向关键

癌蛋白、克服耐药,还能通过调节免疫反应达到治疗的目的,展现出广阔的临床应用

前景。文章综述了两类技术的研究进展及其在癌症治疗中的应用现状,并结合检验

医学视角,探讨其在疗效监测和个体化用药中的潜力与挑战。
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Abstract:Targeted

 

protein
 

degradation
 

(TPD)
 

technology
 

is
 

an
 

emerging
 

approach
 

that
 

utilizes
 

intracellu-
lar

 

proteasome
 

or
 

lysosome
 

systems
 

to
 

eliminate
 

disease-causing
 

proteins,providing
 

novel
 

strategies
 

for
 

dis-
ease

 

treatment.Compared
 

with
 

conventional
 

therapies,TPD
 

has
 

advantages
 

such
 

as
 

targeting
 

"undruppable"
 

proteins,overcoming
 

drug
 

resistance
 

and
 

high
 

selectivity.Among
 

them,proteolysis-targeting
 

chimeras
 

(PRO-
TACs)

 

and
 

molecular
 

gels
 

are
 

representative
 

methods,which
 

have
 

achieved
 

significant
 

progress
 

in
 

E3
 

ligase
 

expansion,linker
 

design,and
 

delivery
 

systems,and
 

are
 

gradually
 

entering
 

clinical
 

research.PROTACs
 

and
 

mo-
lecular

 

glues
 

can
 

not
 

only
 

target
 

key
 

oncoproteins
 

and
 

overcome
 

resistance,but
 

also
 

modulate
 

immune
 

respon-
ses

 

for
 

therapeutic
 

purposes,demonstrating
 

broad
 

clinical
 

application
 

prospects.This
 

article
 

reviews
 

the
 

re-
search

 

progress
 

of
 

the
 

two
 

types
 

of
 

technologies
 

and
 

their
 

current
 

application
 

status
 

in
 

cancer
 

treatment,and
 

discusses
 

their
 

potential
 

and
 

challenges
 

in
 

efficacy
 

monitoring
 

and
 

individualized
 

medication
 

from
 

the
 

perspec-
tive

 

of
 

laboratory
 

medicine.
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  癌症、炎症等多种疾病的发生发展与蛋白质的表 达异常或功能失调密切相关。传统的治疗药物多为
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蛋白抑制剂,即通过抑制蛋白活性发挥作用,但有些

蛋白质并无抑制剂发挥作用的相关靶点,导致常规药

物仅能靶向约
 

20%
 

的可成药蛋白,且容易因为治疗

靶点的突变而产生耐药性[1]。靶向蛋白降解(TPD)
技术是一种利用内源性蛋白降解系统如泛素-蛋白酶

体系统(UPS)和溶酶体进行蛋白质降解的新方法,可
以最大限度地减少脱靶效应并克服耐药性,为传统意

义上“不可药物治疗”的相关疾病提供靶向治疗,成为

近年来生物医药领域的研究热点[2-6]。
在真核细胞中,存在可以清除异常蛋白的蛋白酶

体和溶酶体,一般而言,蛋白酶体通过 UPS消除短寿

命蛋白质和可溶性错误折叠蛋白质[7],除蛋白酶体

外,UPS 还 包 括 各 种 泛 素 连 接 酶 和 去 泛 素 化 酶

(DUB)。而溶酶体负责降解长寿命蛋白质、不溶性蛋

白质聚集体、大分子化合物等[8]。TPD技术的核心是

设计能诱导目标蛋白与降解系统相互作用的分子,通
过泛素化修饰标记靶蛋白并被降解系统降解,其中,
蛋白水解靶向嵌合体(PROTAC)和分子胶是具有代

表性的2项技术。近年来,多种运用PROTAC技术

的药物已进入临床试验,分子胶由于其独特的稳定性

及相对分子质量小的特点也备受关注,但相关临床药

物研究较少[9]。随着对TPD研究的不断深入,TPD
分子设计效率和靶点覆盖范围显著增加,有望开发更

多的药物对癌症进行治疗[10-11]。本文对PROTAC、
分子胶等TPD技术的研究现状及其在肿瘤治疗中的

应用进展进行综述,以期为未来发展及相关研究提供

参考。

1 TPD技术研究现状

1.1 PROTAC
1.1.1 E3连接酶的拓展 人体内有超过600种E3
连接酶,然而仅有少量这些酶的配体应用于TPD,大
多集中在4种主要的E3连接酶:小鼠双微体2同源物

(MDM2)、凋亡蛋白抑制剂(IAP)、VHL和CRBN。发

现新的E3连接酶并优化其配体对于开发新的靶向治

疗药物和增强药理学功效至关重要[12-13]。

Kelch样ECH关联蛋白1(KEAP1)与核因子相

关E2因子2(Nrf2)相互作用以调节细胞保护性蛋白。
因此,KEAP1-Nrf2的蛋白质-蛋白质相互作用抑制剂

的发现引起了人们对应激相关疾病治疗的关注[14]。

2021年,WEI等[15]使用E3连接酶配体KEAP1开发

了PROTAC
 

MS83,其在 MDA-MB-468细胞中对溴

结构域包含蛋白(BRD)3和BRD4的降解比dBET1
更持久。2022年,PEI等[16]发现了一种天然产物长

胡椒碱(PL)作为E3连接酶配体,他们先用竞争性活

性位点导向蛋白质分析谱法证实PL可与多种E3连

接酶结合,再将PL与 CDK
 

9选择性抑制剂(SNS-
032)偶联合成了可靶向降解CDK9的PROTAC

 

955,
并使用TurboID诱饵实验测出 KEAP1是955通过

PL共价连接招募的唯一E3连接酶蛋白。
簇集素蛋白2(CUL2)

 

E3连接酶蛋白fem-1同

源物B(FEM1B)是细胞对还原性应激反应的重要调

节因子。2022年,HENNING等[17]发现一种基于氯

乙酰胺的共价配体 EN106,作为 FEM1B的 配 体,

EN106可通过 ABPP与FEM1B上的半胱氨酸之间

形成了一个直接的共价键。利用这一特性,他们将

EN106与JQ1和达沙替尼的偶联形成了 NJH-1-106
和 NJH-2-142,并成功降解了 BRD4和 BCR-ABL。

2024 年,BANSOD 等[18] 发 现 三 结 构 域 蛋 白 4
(TRIM4)可以作为E3连接酶,通过第415和439号

位的赖氨酸的泛素化结合来降解肿瘤进展位点2
(TPL2)。ZHU等[19]报道了 KEAP1,其为CRL3复

合物的特异性配体,它们可以特异性结合,并通过泛

素介导抗氧化蛋白硫氧还原蛋白(SRX)残基的降解。
斑点型POZ蛋白(SPOP)在调节蛋白质降解中起着

关键作用,并在各种癌症中高效表达,包括前列腺癌

和浆液性子宫内膜癌,大多数肾癌和几乎所有的透明

细胞肾癌。2025年,DENG 等[20]报道了 PROTAC
 

MS479,它可以直接结合 GLP作为桥接蛋白招募

SPOP,从而实现对BRD4/3/2的靶向降解,见图1。
由此 证 明 SPOP 也 可 作 为 E3 连 接 酶。此 外,

DCAF1、KLHDC2、SKP1等新型E3连接酶也被开发

利用于靶向蛋白降解[21-23]。

图1  MS479通过GLP招募SPOP降解BRD4
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1.1.2 接头设计、合成及应用 PROTAC的活性及

降解效率受配体的亲和力、接头的性质和亲和力等的

影响,所以除了拓展E3连接酶外,其对接头的优化也

至关重要。HAN等[24]研究证明,尽管在PROTAC
的设计过程中使用了活性较弱的VHL配体,但通过

优化接头仍然可以实现具有弱活性 VHL配体的

PROTAC对目标蛋白的高效降解,故对接头的优化

很有必要。三唑是稳定而具有多种功能的化合物,加
了三唑的接头,可以很好地促进PROTAC与靶蛋白

和E3泛素连接酶形成三元复合物来增强靶蛋白的降

解活性,还可增强PROTAC分子与靶蛋白的结合亲

和力[25]。2022年,LOREN等[26]报道发现,当4-羟基

他莫昔芬用作弹头并通过含三唑的接头与E3配体连

接时,得到的 PROTAC可以有效降解雌激素受体

(ER),并且发现在优化接头长度和连接方式后,化合

物VHL-1在 MCF-7细胞系中具有最好的ERα降解

活性,与以前报道的ER蛋白降解剂相比,三唑的引入

大大提高了 VHL-1的降解活性。2025年,ZHAO
等[27]使用三唑将先导咪唑加吡啶的酪氨酰-DNA磷

酸二乙酯酶1(TDP1)抑制剂与沙利度胺连接在一起,
形成了许多不同长度接头的PROTAC二价缀合类似

物,这些类似物可以募集VHL和CRBN从而达到降

解TDP1的目的,较短的接头在体外基于凝胶的荧光

测定 中 保 留 对 TDP1 的 微 摩 尔 级 抑 制。PIERRI
等[28]基于三唑和喔啉杂环支架,设计和合成了一系列

BRD9靶向降解剂,通过计算机模拟评价、合成、结合

亲和力测定和体外分析,最终鉴定出了2种基于

VHL的PROTAC,其在急性髓性白血病细胞中具有

较强的蛋白质降解和抗增殖活性。见图2。
单饱和氮杂环在接头中的应用也越来越广泛,哌

啶和哌嗪是常用的材料,作为半刚性化合物,在一定

程度可以上增强接头的刚性,并使接头变为更容易参

与形成三元复合物的构象,从而增强对靶蛋白的降解

活性。当口服给药时,由于PROTAC的相对分子质

量较大,表现出较差的药代动力学值。连接哌啶或哌

嗪后,可为PROTAC分子提供碱性中心,有助于提高

PROTAC的口服生物利用度,增强其在生物药代动

力学系统内的代谢。HU等[29]报道了一系列使用图

卡替尼作为弹头降解HER2的PROTAC。通过分析

HER2和图卡替尼的分子对接结果,他们在喹啉的第

6位引入1-丙基哌嗪,提供后续连接位点,再将CRBN
配体连接到基于哌嗪环的柔性链上,其中CH7C4是

最有效的且对靶标具有高选择性。在10
 

mg/kg的剂

量下,CH7C4对BT-474异种移植物表现出高达73%
的肿瘤抑制率。2024年,LI等[30]在利用含有叠氮基

的泊马来酰胺类似物来设计PROTAC分子8d,实验

结果显示,8d可以降解溴结构域PHD锌指转录因子

(BPTF),直接增加肝细胞癌(HCC)细胞上天然细胞

毒性受体配体水平,促进了 NK细胞对其的识别,从
而在体外和体内增强NK细胞对HCC的细胞毒性。

在优化设计接头时,除了引入唑类和单饱和氮杂

环外,还有通过结构-活性关系(SAR)优化接头长

度[31]等其他方法。ZHANG等[32]报道了一种无接头

的PROTAC,他们将N-降解子直接偶联到多种癌蛋

白的配体上设计出了 Pro-BA,成功降解了 EML4-
ALK和BCR-ABL,并且通过实验证明无接头的Pro-
BA分子在底物结合、泛素化和降解、细胞生长抑制和

抗肿 瘤 功 效 方 面 表 现 出 优 于 带 有3个 聚 乙 二 醇

(PEG)单元的Pro-PEG3-BA,其相对分子质量更小,
具有良好的口服生物利用度。

图2  PROTAC降解BRD9

1.1.3 新型给药方式 PROTAC的相对分子质量

较大,从而影响它的膜穿透能力及口服利用度。为解

决这一问题,研究人员提出新型的给药方式,协助药

物入胞发挥作用。2023年,HE等[33]设计出了一种光

笼型PROTAC(phoBET1),并将其负载于介二氧化

硅纳米粒(UMSNs)中,构建出近红外光激活的PRO-
TAC纳米笼(UMSNs@phoBET1),从而达到可以光

控靶蛋白降解的目的。在980
 

nm近红外光照射下,

UMSNs@phoBET1纳米笼可被激活,通过可控模式

释放活性PROTAC,降解BRD4并诱导 MV-4-11癌

细胞凋亡。2024年,LIU等[34]构建了一种由前列腺

素E合成酶3(PTGES3)结合肽与E3泛素连接酶配

体泊马来酰胺组成的PTGES3靶向降解剂,并通过脂

质体递送实现高效入胞,见图3。该复合物在体内外
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均能有效诱导PTGES3蛋白降解。GAO等[35]设计

了一个区域受限的PROTAC纳米颗粒,它装载了在

低氧和正常氧气环境下均可激活的PROTAC前体药

物,用于精确操纵BRD4的降解,并清除肿瘤。纳米

颗粒增加了 PROTAC的穿透力,增加了其生物利

用度。

WANG等[36]通过将可靶向降解BRD4的PRO-
TAC与受体酪氨酸激酶样孤儿受体1(ROR1)抗体偶

联,开 发 了 一 种 新 型 降 解 剂-抗 体 偶 联 物(DAC)。

DAC在抗原结合和内化后表现出较强的降解活性和

细胞毒性。与未结合的PROTAC相比,DAC在PC
 

3
和 MDA-MB-231异种移植小鼠模型中表现出更优的

药代动力学和强效抗肿瘤功效。WANG等[37]的研究

发现,分化簇CD36介导的内细胞级联是细胞摄取大

分子和极性分子、扩展五规则Ro5分子(eRo5)和超越

五规则Ro5分子(bRo5)的主要机制。通过前药方法

对CD36的结构进行修饰来增加PROTAC与CD36
的亲和力,从而提高了PROTAC的细胞摄取、蛋白质

降解效率及体内外抗肿瘤活性。这为基于化学诱导

的内吞作用的药物发现、开发和潜在的临床应用提供

了一种新的方法。

图3  脂质体辅助给药

1.2 分子胶

1.2.1 用于筛选分子胶的方法 与PROTAC一样,
分子胶降解剂通过诱导E3连接酶与目标蛋白之间的

相互作用来发挥作用,但分子胶的相对分子质量远小

于PROTAC,由于其发现较为偶然,很多学者研究了

各种方法去解决这个问题。KING等[38]使用共价化

学 蛋 白 质 组 学 方 法 发 现 了 一 种 共 价 分 子 胶 降 解

剂———EN450,它 能 诱 导 E2 结 合 酶 UBE2D1 与

NFKB1的结合,以蛋白酶体和泛素化修饰方式降解

NFKB1。HSIA等[39]使用正交遗传筛选等方法,研究

出了BRD2和BRD4的双功能降解剂———IBGs,它们

不是像PROTAC那样以反式连接靶标和连接酶发挥

作用,而是同时以顺式接合并连接靶蛋白的2个相邻

结构域,通过分子内2个功能域协同作用增强
 

E3
 

连

接酶与靶蛋白的相互作用,显著提高了降解效率。

KANG等[40]通过解析E3连接酶与分子胶及靶蛋白

形成的复合物结构,并结合计算建模分析,深入研究

分子胶诱导靶向降解的作用机制,从而更好地开发分

子胶。除此之外,KAPCAN等[41]提出了“类分子胶”的
概念,他们开发了一种双重邻近标记策略,使嵌合体能

够在三元复合体中将非相互作用的血清抗体与肿瘤表

面蛋白共价交联,从而达到降解靶蛋白的目的。

1.2.2 各种新发现的分子胶 LI等[42]报道了一组

可以作为分子胶降解剂的物质,即JQ1的衍生物,其
通过辅助DCAF16共价修饰发挥作用,降解DRB4。

GU等[43]报道了一种新型分子胶Aurovertin
 

B(AB),
并确定AB是一种有效的抗肿瘤药物,它与冠蛋白1A
(CORO1A)结合,促进其与 NEDD8和 TRIM4的相

互作用,从而促进CORO1A的泛素化和蛋白酶体降

解。RAZUMKOV等[44]发现了基于 CRBN 的分子

胶,可以靶向降解 G2 检查点激酶(WEE1),见图4。

WEE1是一种重要的细胞分裂激酶,可磷酸化并抑制

CDK1/细胞周期蛋白B以应对DNA损伤,在许多癌

症中失调。LI等[45]报道了具有二氮杂萘酮支架的新

型分子胶 MGD-4,该分子胶可以通过CRBN靶向降

解IKAKOS 家 族 锌 指 蛋 白 (IKZF)1、IKZF2 和

IKZF3,在 MM和AML细胞中表现出亚微摩尔的抗

增殖作用。

图4  HZR-1衍生物(分子胶)降解靶蛋白
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  2025年,CHEN等[46]开发了能降解NIMA相关

蛋白激酶7(NEK7)的LC-04-045,其对NEK7具高选

择性,还可有效抑制下游细胞因子的分泌,包括IL-1β
和IL-18,表明 NEK7

 

MGDs还能治疗炎症性疾病。
甲异靛(Mei)已被临床用于治疗慢性粒细胞白血病

(CML),但其发挥作用的确切分子靶点尚不清楚。
ZHANG等[47]研究表明,Mei可作为分子胶水,将
PKMYT1和TRIM25之间的相互作用增强了约30
倍,从而促进了PKMYT1的有效降解。在原位异种

移植模型中,PKMYT1降低可延迟白血病进展并减

少淋巴结转移。相信此类研究的增多,能够促进靶向

药物的发展,为肿瘤患者带来福音。
2 在癌症治疗中的应用

2.1 靶向癌蛋白及克服肿瘤耐药性 肿瘤在治疗过

程中,由于抑制剂的长期高浓度作用,可能会造成毒

性积累以及突变,导致耐药性或代偿机制的激活。
RAS是人类癌症中常见的癌基因家族,KRAS基因是

RAS基因家族中最常见的突变基因,约占所有RAS
驱动癌症的85%,突变位点常见于甘氨酸残基(G12、
G13)、谷氨酰胺残基61(Q61)[48]。2022年,LI等[49]

报道了低相对分子质量的靶向PROTAC———KP-14。
该分子以 KRAS

 

G12C-IN-3为弹头,招募E3连接酶

CRBN,有效诱导NCI-H358细胞中KRASG12C的降解

并 抑 制 其 增 殖。YANG 等[50]开 发 了 一 种 高 效 的

KRASG12C
 

PROTAC,YN14,其可显著抑制肿瘤生长。
COUGH等[51]报道了一种强效、选择性、口服生

物可利用的PROTAC———ARV-471,其可同时结合

细胞内E3连接酶CRBN和ER的配体结合结构域

(LBD),通过UPS降解ER。在ER+细胞中快速降解

ER,且在突变体中的效果相同。在体内模型中,与氟

维司群相比,每日一次口服ARV-471,显著抑制了肿

瘤生长。TAKAKI等[52]报道了OPB-171775作为一

种新型分子胶,在胃肠道间质瘤(GIST)患者来源的

异种移植(PDX)模型中具有强效抗癌活性,KIT突变

后仍能诱导磷酸二酯酶3A和Schlafen家族成员12
之间形成复合物,导致多种细胞应激和死亡(图5),提
示其有望成为当前对TKI耐药的晚期GIST患者的

新的治疗策略。ZHOU等[53]报道了一种有效的、选
择 性 的、可 以 口 服 的 CDK12/13

 

PROTAC———
ZLC491。该化合物在 TNBC

 

MDA-MB-231细胞中

有效降解CDK12和CDK13,还能有效抑制长基因的

转录和表达,并显著抑制多种TNBC细胞系的增殖。
重要的是,ZLC491在大鼠中的口服生物利用度为

46.8%,并在 MDA-MB-231异种移植小鼠模型中对

CDK12/13表现出有效的体内降解作用。XIE等[54]

开发了一种基于核酸适体的分子束缚剂,他们将靶向

糖基化细胞型朊蛋白(PrPC)的适配体TT-1e改造成

分子束缚剂TTe-TTe,它可以诱导PrPC聚集并将其

在黑色素瘤细胞的溶酶体中降解,该束缚剂在体外和

体内均能有效抑制黑色素瘤的增殖,不仅为黑色素瘤

的治疗提供了新的策略,同时也为朊病毒相关疾病治

疗提供了潜在的应用策略。

图5  OPB171775治疗癌症机制

2.2 参与免疫调节与免疫治疗 免疫治疗,又称生

物治疗,是一种通过调节机体免疫反应(增强或抑制)
来实现疾病治疗的策略,在癌症领域,免疫治疗展现

出广阔的应用前景。Bruton's酪氨酸激酶(BTK)在
调节B细胞的增殖、成熟和编程细胞死亡过程中发挥

关键作用。近年来,抑制BTK已成为治疗血液恶性

肿瘤和自身免疫性疾病的有效治疗方法。JAIME-

FIGUERDA等[55]合成的PROTAC———SJF-620,使
用了VHL和CRBN配体,并保持BTK配体和接头

长度不变。SJF-620有望成为治疗C481突变型慢性

淋巴细胞白血病的有效策略。ZHANG等[56]报道了

BTK-PROTAC
 

C13,其具有良好口服生物利用度和

靶向BTK降解活性,在血液肿瘤细胞中,C13可显著

降低BTK蛋白水平并抑制肿瘤细胞生长。因此,C13
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或许可作为治疗淋巴瘤的新型药物。
IKZF2是调控 T 细胞功 能 的 关 键 转 录 因 子,

IKZF2缺 乏 会 减 少 小 鼠 的 肿 瘤 生 长。BONAZZI
等[57]发现了IKZF2

 

的选择性分子胶降解剂 NVP-
DKY709,其可将CRBN配体的选择性从IKZF1转向

IKZF2从而导致IKZF2的降解。在小鼠体内,NVP-
DKY709可延缓人源化免疫系统肿瘤的生长。NVP-
DKY709还 可 作 为 癌 症 免 疫 治 疗 的 免 疫 增 强 剂。
CHEN等[58]报道了分子胶PVTX-405,其是一种强

效、高选择性和口服有效的IKZF2降解剂。PVTX-
405可降解IKZF2,同时保留其他 CRBN 新底物。
PVTX-405通过降解IKZF2增加了炎症因子白细胞

介素(IL)-2的产生并降低Teff的抑制活性,促进Te-
ff细胞增殖。

HUANG等[59]研究团队合成了 NLP@C-PRO-
TAC,其可靶向降解ZBP1,使IL-18、IL-6、IL-1β、肿
瘤坏死因子α(TNF-α)和干扰素β(IFN-β)等促炎细胞

因子水平降低,导致炎症反应强度降低,相关机制见

图6。这表明NLP@C-PROTAC可以特异性降解Z-
DNA结合蛋白1(ZBP1),从而抑制促炎细胞因子的

产生并调节免疫反应以控制炎症。脆性X智力低下

蛋白(FMRP)是一种 RNA结合蛋白(RBP),FMRP
往往在人类肿瘤中异常高表达,与肿瘤的侵袭、转移

和免 疫 逃 避 密 切 相 关。PENG 等[60]报 道 了 一 种

PROTAC
 

Sc1-VHLL,其可通过泛素化途径在小鼠和

人癌细胞中特异性降解内源性FMRP。FMRP降解

显著改变了癌细胞的分泌模式,导致促炎细胞因子水

平增加和免疫调节物质水平减少。在CT26荷瘤小鼠

模型中,肿瘤细胞内FMRP的降解显著促进淋巴细胞

和CD8+T细胞的浸润,并降低Treg细胞的比例,重
塑促炎性肿瘤微环境,当与免疫检查点阻断(ICB)疗
法组合时,还可以显著抑制肿瘤生长。

图6  NLP@C-PROTA调节免疫反应机制

3 小结与展望

  近年来,TPD技术发展迅速,其凭借最大限度降

低脱靶效应、克服耐药性,以及对传统“不可成药”靶
点的有效性,在癌症治疗中展现出巨大潜力。然而,
TPD技术的应用与发展仍面临多重挑战:一是降解途

径相对单一,目前大多数PROTAC和分子胶依赖于

蛋白酶体途径,溶酶体途径相关研究仍显不足;二是

E3连接酶资源有限,尽管人体内存在600余种E3连

接酶,但当前可应用于TPD的仅十余种;三是PRO-
TAC相对分子质量较大,导致口服生物利用度和细

胞渗透性较差;四是分子胶虽具相对分子质量小和稳

定性高的优势,但设计难度大,其发现多依赖于偶然

性;五是脱靶问题,这也是目前TPD临床应用中面临

的最大挑战。
未来 TPD技术的研究可能侧重于以下5个方

面:第一,加强溶酶体途径降解的基础研究,深入阐明

其分子机制,并将其原理应用于靶向药物开发;第二,
挖掘并开发更多可用的E3连接酶,扩展降解靶点范

围,为PROTAC与分子胶技术开辟更广阔的空间;第
三,优化PROTAC分子结构,降低相对分子质量、提
高生物利用度与膜渗透性,从而改善药代动力学特

性;第四,建立系统化的分子胶设计与筛选策略,减少

对偶然发现的依赖;第五,设计具有更高选择性的

TPD分子,拓展新型、组织特异性E3连接酶,避免依

赖于广泛表达的连接酶。随着机制研究与技术创新

的不断深入,TPD有望成为新一代癌症治疗的重要支

柱,为人类疾病的精准与高效治疗提供坚实保障。
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