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  摘 要:滤泡辅助性T细胞(Tfh)是一类特殊的CD4+T细胞,主要存在于淋巴滤泡中,负责辅助B细胞增

殖、分化及产生抗体,在抗感染免疫中发挥核心作用。鉴于Tfh细胞在调控体液免疫应答中的重要作用,近年

来,成为感染性疾病及相关疫苗研究的热点。文章综述了Tfh细胞的表面标志物、分化调控机制及其在新型冠

状病毒(SARS-CoV-2)感染及疫苗研究中的最新研究进展,为SARS-CoV-2疫苗设计和优化,以及SARS-CoV-
2变异株交叉保护能力提升提供新的理论依据和研究思路。
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Abstract:Follicular

 

Helper
 

T
 

Cells
 

(TFH)
 

are
 

a
 

specialized
 

subset
 

of
 

CD4+T
 

cells
 

that
 

predominantly
 

lo-
calize

 

within
 

lymphoid
 

follicles.These
 

cells
 

play
 

a
 

crucial
 

role
 

in
 

facilitating
 

B
 

cell
 

proliferation,differentia-
tion,and

 

antibody
 

production,thereby
 

thereby
 

serving
 

as
 

a
 

pivotal
 

component
 

of
 

the
 

adaptive
 

immune
 

re-
sponse

 

against
 

infections.Given
 

the
 

significant
 

function
 

of
 

TFH
 

cells
 

in
 

regulating
 

humoral
 

immunity,they
 

have
 

become
 

a
 

focal
 

point
 

in
 

the
 

research
 

of
 

infectious
 

diseases
 

and
 

related
 

vaccine
 

development
 

in
 

recent
 

years.This
 

review
 

summarizes
 

the
 

surface
 

markers
 

of
 

T
 

follicular
 

helper
 

(Tfh)
 

cells,their
 

differentiation
 

reg-
ulatory

 

mechanisms,and
 

the
 

latest
 

research
 

progress
 

of
 

Tfh
 

cells
 

in
 

SARS-CoV-2
 

infection
 

and
 

vaccine
 

stud-
ies.It

 

aims
  

to
 

provide
 

new
 

theoretical
 

foundations
 

and
 

research
 

insights
 

for
 

optimizing
 

the
 

design
 

of
 

SARS-
CoV-2

 

vaccines
 

and
 

enhancing
 

the
 

cross-protection
 

ability
 

against
 

SARS-CoV-2
 

variants.
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  滤泡辅助性T细胞(Tfh)是新近确定的一类辅助

性CD4+T细胞,主要存在于二级淋巴器官(SLO)中,
并与B细胞相互作用形成生发中心。在生发中心中,
抗原特异的Tfh细胞对B细胞进行进一步筛选,促进

B细胞抗体基因重排、类别转换、体细胞突变,最终形

成表达高亲和力抗体的记忆性B细胞和产生抗体的

浆细胞[1]。深入研究Tfh细胞的特性对揭示新型冠

状病毒(SARS-CoV-2)的免疫应答机制、优化疫苗设

计具有重要意义。

1 Tfh细胞的表面标志物及分型

Tfh细胞属于CD4+T细胞亚群,其特征性表面

标志为高水平的趋化因子受体5蛋白(CXCR5)和B
细胞淋巴瘤-6(BCL6)[2],其他重要标志物包括程序性

死亡受体1(PD-1)、可诱导共刺激分子(ICOS)[3]、

SLAM相关蛋白(SAP)和趋化因子受体3(CXCR3)

分子等[4]。在功能方面,Tfh细胞通过分泌白细胞介

素(IL)-4、IL-21、IL-17、γ干扰素(IFN-γ)等多种细胞

因子,在调控B细胞分化,成熟及抗体产生过程中发

挥关键作用。

CXCR5是一种主要的趋化因子受体,主要在B
细胞和T细胞亚群的表面表达。其配体B淋巴细胞
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趋化因子CXC配体13(CXCL13)是介导B细胞归巢

至淋巴滤泡的必需分子[5]。Tfh细胞的发现始于对

CXCR5+T细胞亚群的分析。有研究表明,CXCR5在

被激活的CD4+T细胞和成熟的记忆T细胞表面短

暂表达,而在初始 T细胞中不表达。与其他 T细胞

亚群不同,Tfh细胞长期稳定高表达CXCR5,并通过

CXCR5-CXCL13轴响应滤泡区的趋化信号,从而定

位至B细胞滤泡。尽管Tfh细胞在产生细胞因子的

效率方面较其他T细胞亚群低,但其独特的B细胞辅

助功能可有效诱导B细胞向滤泡区迁移并产生抗

体[6],但仅凭CXCR5+并不足以支持Tfh细胞成为一

个区别于辅助性T细胞(Th)1、Th2及Th17,调节性

T细胞(Treg)的独立T细胞亚群。

BCL-6是调控初始T细胞向Tfh细胞分化和发

育的关键转录因子,其表达水平是区分Tfh细胞与其

他CD4+T细胞亚群的重要生物学标志。有研究表

明,BCL-6缺失会导致T细胞无法表达CXCR5,使T
细胞无法迁移至B细胞滤泡区,从而完全阻断Tfh细

胞的分化,甚至导致该亚群消失[7]。在BCL-6缺陷的

小鼠模型中可观察到生发中心的形成受到影响,以及

T细胞依赖的抗原特异性抗体应答的缺失。然而,

BCL-6的缺陷并不影响其他 T细胞亚型的正常发

育[8]。这些研究结果强调了BCL-6作为Tfh细胞分

化中的特异性调控作用,并进一步证实了Tfh细胞作

为CD4+T细胞中一个独特亚群的地位。

PD-1是一种在免疫调节中扮演关键角色的免疫

检查点分子,其主要配体为程序性死亡受体-配体1
(PD-L1)。PD-1的主要功能之一是抑制T细胞受体

(TCR)信号和CD28共刺激途径,从而对T细胞的激

活和增殖进行负向调节[9]。此外,PD-1不仅作为Tfh
细胞表面的一个重要标志物,还参与协助B细胞促进

生发中心形成。在生发中心内部,PD-L1-PD-1信号

对B细胞成熟和抗体亲和力至关重要,影响生发中心

中B细胞的数量和质量。PD-1还可通过抑制 CX-
CR5下游磷脂酰肌醇3-激酶(PI3K)活性,限制CX-
CR3在Tfh细胞中的表达上调,进一步促使Tfh细胞

集中于生发中心区域[10],这对于B细胞抗体产生和

亲和力成熟具有重要意义。

ICOS是一种表达在活化 T细胞上的共刺激因

子,作 为 CD28 的 下 游 因 子 发 挥 作 用,其 配 体 为

ICOSL[11]。有 研 究 表 明,依 赖 于 初 始 B 细 胞 上

ICOSL的表达,ICOS可以通过PI3K通路增强细胞

的随机运动能力,或直接刺激Tfh细胞伪足形成以促

进其向滤泡区运动[12]。ICOS-ICOSL之间的相互作

用可以调节Tfh细胞辅助的生发中心反应和亲和力

的成熟。

SAP为信号淋巴细胞活化分子(SLAM)相关蛋

白,是一种调节激活的T细胞反应的跨膜受体。SAP
通过介导T细胞-B细胞免疫突触的形成,调控细胞

间的信号传导。当SAP缺失时,即使T细胞表达正

常水平的CXCR5、ICOS和白细胞表面分化抗原40
配体(CD40L),也不能有效地向B细胞传递辅助信

号,促进其增殖、分化和生发中心形成。此外,SAP缺

乏的 T 细 胞 不 能 迁 移 到 生 发 中 心 区 形 成 Tfh
细胞[13]。

Tfh细胞可分为存在于SLO中的生发中心Tfh
细胞(GC-Tfh细胞)、记忆Tfh细胞(mTfh细胞),以
及存在于外周血中的循环 Tfh细胞(cTfh细胞)。

GC-Tfh细 胞 的 PD-1 表 达 水 平 高,表 征 为 CX-
CR5hiPD-1hiBCL6+ [14-15],在小鼠免疫或感染急性期,
占SLO 中 抗 原 特 异 性 CD4+ T 细 胞 的 10% ~
30%[16]。cTfh细胞存在于外周血单个核细胞(PB-
MCs)中,通常占总CD4+T细胞的5%~15%(儿童)
或5%~25%(成人)[17]。cTfh细胞可进一步分为

cTfh1、cTfh2与cTfh17
 

3个亚群,其中cTfh1亚群表

征为CD4+CXCR5+CXCR3+CCR6-,分泌IFN-γ、肿
瘤坏死因子α(TNF-α)等Th1型细胞因子;cTfh2亚

群表征为CD4+CXCR5+CXCR3-CCR6-,分泌IL-2、

IL-4、IL-13等 Th2型细胞因子;cTfh17亚群表征为

CD4+CXCR5+CXCR3-CCR6+,分泌IL-17A、IL-22
等Th17型细胞因子。cTfh2和cTfh17亚群通过IL-
21诱导初始B细胞分泌抗体,并介导抗体类型转换,
其中cTfh2亚群促进免疫球蛋白G(IgG)和免疫球蛋

白E(IgE)的分泌,而cTfh17亚群促进IgG及免疫球

蛋白A(IgA)的分泌[18]。

2 Tfh细胞的分化过程

Tfh细胞在体内分化过程的调控是一种多因素、
多步骤共同参与的复杂过程。研究表明,初始CD4+

T细胞的命运决定并非自主完成,而是在微环境细胞

因子的精密调控下向不同亚群分化,展现出显著的可

塑性。如在体外激活初始CD4+T细胞,发现在不同

的培养条件下,细胞可分化为 Th1或 Th2细胞[19]。
与其他效应T细胞亚群相比,Tfh细胞最典型的特征

是其定位在滤泡区域内[20]。因此,在分化过程中存在

3个关键阶段,即初始T细胞的激活过程,Tfh细胞的

迁移过程,以及Tfh细胞与B细胞的相互作用过程。
正常情况下,初始T细胞首先通过淋巴管或内皮

微静脉进入淋巴组织。在淋巴组织的T细胞区内,初
始T细胞表达高水平C-C趋化因子受体7(CCR7),
而由成纤维网状细胞(FRC)分泌的次级淋巴组织趋

化因子(CCL21)作为CCR7的配体,具有促进T细胞

迁移和黏附的作用。在没有外来抗原刺激时,初始T
细胞由于CCR7与CCL21的相互作用而被限定于T
细胞区。当机体受到病原体刺激时,初始T细胞的激
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活需要同时满足树突状细胞(DC)等抗原提呈细胞和

共刺激因子的双信号刺激作用。在 DC分泌的IL-
12,B细胞分泌的BCL-6以及活化的 T细胞分泌的

IL-21等因子的作用下,导致初始T细胞CCR7表达

量下降,CXCR5表达上调,使其脱离T细胞区,向T-
B交界区移动。但也有研究指出,免疫反应早期存在

不依赖BCL-6的途径,而是依赖转录因子achaete-
scute家族bHLH 转录因子2(Ascl2)直接调控相关

基因上调CXCR5的表达,并下调CCR7表达,从而抑

制细胞向Th1或Th17方向分化[21]。

Tfh细胞的迁移过程主要是活化的 Tfh前体细

胞从T 细 胞 区 转 移 到 B 细 胞 区 的 过 程。依 赖 于

ICOS-ICOSL之间的相互作用,促进细胞形成伪足,
增强其随机运动的能力。通过SAP形成细胞间突

触,介导T细胞和B细胞之间的信号传递。SAP和

ICOS-ICOSL等是Tfh细胞向B细胞区迁移的分子

基础。
在T-B交界区pre-Tfh细胞通过表面分子(BCL-

6、PD-1等)和细胞自分泌的细胞因子(IL-6、IL-21等)
活化B细胞。一部分活化的B细胞不进入滤泡区,而
是迁移到脾脏或淋巴结髓索中的滤泡外区域,并分化

为短寿命的浆母细胞,产生低亲和力抗体,介导早期

体液免疫反应。另一部分则移动到滤泡中形成生发

中心[4]。在生发中心中,B细胞剧烈增殖,在 Tfh细

胞的参与下经历广泛的体细胞超突变,类别转换重组

和亲和力成熟,产生分泌高亲和力抗体的浆细胞和记

忆B细胞。

3 Tfh细胞与SARS-CoV-2感染

在SARS-CoV-2感染中,Tfh细胞作为调控体液

免疫的核心枢纽,其动态变化与功能异质性深刻影响

着疾病进展与免疫应答的质量。
感染SARS-CoV-2后,病毒抗原被树突状细胞摄

取并递呈,进而激活初始CD4+T细胞向Tfh细胞分

化。这些Tfh细胞可定向迁移至淋巴结生发中心,通
过分泌IL-21、IL-4等细胞因子,并与B细胞表面 M-
CD40L相互作用,驱动B细胞增殖、抗体类别转换及

亲和力成熟,最终产生高亲和力中和抗体[22]。多项研

究表明,在SARS-CoV-2感染早期(发病后7~14
 

d)
即可检测到SARS-CoV-2刺突糖蛋白特异性Tfh细

胞显著扩增,其扩增频率与中和抗体效价呈正相关,
且在康复患者中持续存在至少6个月[23-24]。

Tfh细胞的功能异质性在感染中呈现双重效

应[25]。根据趋化因子受体表达差异,Tfh细胞可分为

CXCR3+CCR6+及CXCR3-CCR6-等亚群[26]。重症

住院患者中,感染SARS-CoV-2后CXCR3+Tfh细胞

比例显著升高,其占总Tfh细胞比例可达52.6%。这

类细胞分泌的IFN-γ与TNF-α可增强Th1型免疫应

答,不仅促进B细胞分化为浆细胞,同时还能通过分

泌CXCL13招募B细胞至生发中心,从而引起高效抗

体应答[27]。然而,CXCR3+Tfh细胞的过度活化可能

引 发 免 疫 病 理 损 伤。该 亚 群 高 表 达 的 穿 孔 素

(PRF1)、颗粒酶B(GZMB)及自然杀伤细胞颗粒蛋白

7(NKG7)等细胞毒性分子可直接杀伤病毒感染的B
细胞,导致生发中心功能紊乱,这一机制与死亡患者

中生发中心B细胞数量减少密切相关[23-24,27]。此外,
细胞毒性Tfh细胞在病程早期与针对S蛋白抗体水

平呈显著负相关,提示其可能通过抑制体液免疫应答

加剧病情进展[26]。这种异常反应可能与Treg比例减

少有关,研究发现住院患者中SARS-CoV-2反应性

Treg细胞比例较非住院患者降低42%(P<0.001),
导致对细胞毒性Tfh的免疫抑制作用减弱[18]。此外,
早期抗体应答延迟(症状出现7

 

d内IgG水平降低

6.8倍)与患者病死率升高直接相关,进一步印证了

Tfh功能失衡的临床影响[21]。
在SARS-CoV-2感染的早期阶段,Tfh细胞的及

时激活对中和抗体的产生至关重要。研究发现,发病

1周内抗体水平低的患者,疾病预后往往较差,其Tfh
细胞应答延迟且功能受损,具体表现为IL-21分泌减

少及CXCR5表达下调[28]。这种免疫应答延迟可能

与病毒载量过高或抗原呈递异常有关,导致生发中心

反应启动滞后,抗体成熟过程受阻。此外,部分患者

中存在的交叉反应性 Tfh细胞(如针对人冠状病毒

HCoV-HKU1)可能通过表位竞争干扰SARS-CoV-2
特异性应答,进而影响中和抗体的广谱性和效价[23]。

临床研究显示,Tfh细胞亚群动态变化可作为评

估病情的潜在生物标志物。例如,CXCR3+Tfh细胞

比例与淋巴细胞恢复速度呈正相关,而CCR6+Tfh细

胞升高提示慢性炎症状态[24]。监测这些亚群的比例

变化,可能为个体化治疗提供依据,如通过调节Treg/

Tfh平衡或靶向IL-21信号通路,改善重症患者的抗

体应答[29-30]。此外,Tfh细胞的功能状态还可能影响

疫苗效果。有研究发现,康复患者中CXCR3+Tfh细

胞高比例者对信使核糖核酸(mRNA)疫苗的抗体应

答更持久[31]。
未来研究需进一步探究Tfh细胞在SARS-CoV-

2感染不同阶段的调控机制,特别是其与Treg、CD8+

T细胞及巨噬细胞的相互作用网络。例如,Tfh细胞

分泌的IL-21可增强CD8+T细胞的杀伤功能,但过

度激活可能导致免疫耗竭。此外,Tfh细胞表面的

PD-1、淋巴细胞活化基因-3(LAG3)等抑制性受体表

达上调时,可能会限制其自身功能,从而成为免疫检

查点治疗的潜在靶点[27]。开发基于Tfh细胞亚群的

新型疗法,如过继转移CXCR3+Tfh细胞或调控其归

巢至生发中心,有望优化抗体应答并减少免疫病理
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损伤。

4 Tfh细胞与疫苗接种

SARS-CoV-2疫苗通过激活体液免疫和细胞免

疫应答提供保护,在这一过程中,Tfh细胞在促进抗

体产生和维持免疫记忆中起关键作用。不同类型疫

苗(灭活疫苗、mRNA疫苗、病毒载体疫苗、重组蛋白

疫苗及病毒样颗粒疫苗)在Tfh细胞激活模式、亚群

分布及免疫记忆维持方面差异有统计学意义。以下

将结合新近研究成果,分述各类疫苗的Tfh细胞应答

特征。

4.1 灭活疫苗接种后的Tfh应答特征 灭活疫苗主

要借助完整病毒颗粒诱导机体免疫反应。相关研究

显示,接种两剂灭活疫苗后,S蛋白特异性Tfh细胞

会在首剂接种后的14
 

d开始显著增多,第2剂接种后

的14
 

d达到峰值。在这个过程中,CXCR3+Tfh细胞

的频率与中和抗体效价呈正相关[32]。此外,在首剂接

种后的28
 

d,CXCR3-Tfh细胞亚群会出现选择性扩

增的情况,这一现象可能与早期体液免疫应答有关。
第3剂加强免疫能够进一步促使CXCR3+Tfh细胞

大量扩增,从而提升抗体的亲和力和中和活性。不

过,CXCR3-Tfh细胞未呈现显著增加,但仍能维持与

CXCR3+亚群相近的水平,这表明它们可能通过不同

的机制共同推动抗体应答。从功能层面来看,CX-
CR3+Tfh细胞表现出更高的激活状态,并且能够分

泌更多的IL-21,这对于抗体的亲和力成熟起着至关

重要的作用,使得机体产生的抗体能够更有效地识别

和中和病毒。

4.2 mRNA疫苗接种后的Tfh细胞应答特征 mR-
NA疫苗具有独特的作用机制,它可以在局部淋巴结

中实现长效的抗原表达,进而持续诱导的Tfh细胞免

疫应答。研究发现,接种 mRNA疫苗后的6个月内,

S蛋白特异性 Tfh细胞仍然在引流淋巴结中以较高

的频率存在,并且与持续的生发中心B细胞反应密切

相关[33]。通过对T细胞抗原受体(TCR)测序分析,
发现了主要组织相容性复合体Ⅱ类DP

 

beta
 

1(HLA-
DPB1*04)限制性Tfh细胞克隆,这些克隆对S167-
180表位表现出显著的免疫优势,其TCRα链呈现出

公共基序CA[G/A/V]XNYGGSQGNLIF,提示该表

位在人群中具有广泛的免疫原性,能够有效激活多克

隆Tfh细胞免疫应答[34]。
与灭活疫苗不同的是,mRNA疫苗诱导的 Tfh

细胞应答主要以CXCR3+亚群为主,并且这种应答能

够持续更长时间。例如,在接种 BioNTech/辉瑞的

mRNA疫苗(BNT162b2)后,S167-180特异性Tfh细

胞在淋巴结中可以维持至少6个月,其频率与生发中

心B细胞的数量呈显著正相关。此外,mRNA疫苗

诱导的Tfh细胞表现出更高的激活状态(HLA-DR+

ICOS+PD-1+)和更强的IL-21分泌能力,能够直接促

进B细胞的亲和力成熟,有助于机体产生更高效的抗

体,增强对病毒的防御能力[34]。

4.3 病毒载体疫苗接种后的Tfh细胞应答特征 病

毒载体疫苗(如 Ad26.COV2.S疫苗)利用病毒作为

载体来递送抗原,这种方式能够高效地激活细胞免疫

和体液免疫。有研究表明,Ad26.COV2.S疫苗可以

诱导出强烈的S蛋白特异性Tfh细胞应答,其中CX-
CR3+Tfh细胞占主导地位,并且与中和抗体效价呈

正相关[35]。在疫苗接种后的早期阶段,CXCR3+Tfh
细胞迅速增多,带动中和抗体效价上升,为机体提供

了及时的免疫保护。与 mRNA疫苗相比,病毒载体

疫苗诱导的Tfh细胞应答在早期更为迅速,但在持久

性方面稍显不足。
值得注意的是,病毒载体疫苗可能会受到预存抗

体的影响,从而降低疫苗的免疫效果。然而,研究发

现,即使存在预存抗体,Ad26.COV2.S疫苗仍然能够

诱导出有效的S蛋白特异性Tfh细胞应答,这表明该

疫苗具有较好的免疫原性和抗干扰能力。此外,病毒

载体疫苗诱导的Tfh细胞应答在应对Omicron变异

株时表现出了一定的交叉反应性,尽管这种交叉反应

性可能会受到变异株突变的影响[35]。例如,当发生

Omicron变异株感染时,虽然Tfh细胞的应答强度可

能会有所下降,但仍能识别部分变异株抗原,引发免

疫反应,为机体提供一定程度的交叉保护[36]。

4.4 重组蛋白疫苗和病毒样颗粒疫苗接种后的Tfh
细胞应答特征 重组蛋白疫苗(如 Novavax)和病毒

样颗粒疫苗(如NVX-CoV2373)通过提供纯化的S蛋

白或类似病毒的颗粒来激发免疫反应。研究显示,这
些疫苗能够诱导出较强的 Tfh细胞应答,其中CX-
CR3+Tfh细胞的频率与中和抗体效价呈显著正相

关[37]。与灭活疫苗相比,重组蛋白疫苗和病毒样颗粒

疫苗诱导的Tfh细胞应答在早期更为迅速,并且能够

更快地达到峰值。AI等[38]的研究显示,接种两剂次

SARS-CoV-2灭活疫苗后,使用SARS-CoV-2重组蛋

白亚单位疫苗(ZF2001)作为异源性疫苗增强剂时,相
比于同源疫苗加强针,ZF2001组能够产生更高的中

和抗体效价,能维持更长时间的免疫水平,并且接种

ZF2001后较短时间内,CXCR3+Tfh细胞的频率明显

上升,同时中和抗体效价也快速升高。
此外,重组蛋白疫苗和病毒样颗粒疫苗在诱导

Tfh细胞应答时,可能会同时激活多种Tfh亚群,包
括CXCR3+和CXCR3-亚群,从而形成更为广泛和持

久的免疫应答。这种多亚群共同激活的模式,极大地

拓宽了免疫反应的维度,有助于机体从多个角度识别

和应对病毒,显著增强了免疫防御的全面性和持久

性。AI等[38]和 GOBEIL团队[39-40]研究发现,重组
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SARS-CoV-2蛋白疫苗和病毒样颗粒SARS-CoV-2
疫苗诱导的Tfh细胞应答在应对SARS-CoV-2不同

变异株时表现出了较好的交叉反应性,这可能与它们

能够提供更全面的抗原表位有关。相较于其他新冠

疫苗,重组蛋白疫苗和病毒样颗粒疫苗的抗原组成相

对简单,但抗原浓度较高,这使得Tfh细胞能够更有

效地识别病毒抗原表位。即便病毒发生抗原漂移,凭
借其较高的抗原浓度和相对多样的表位,仍会有部分

保守表位能被 Tfh细胞识别,进而激活相关免疫细

胞,引发免疫反应,从而为机体应对不同变异株提供

一定程度的保护作用[41]。
因此,不同类型的SARS-CoV-2疫苗在诱导Tfh

细胞应答方面各有特点。灭活疫苗能够诱导出双相

的Tfh细胞应答,早期以CXCR3- 亚群为主,在疫苗

接种初期快速启动免疫反应;后期以CXCR3+亚群为

主,有助于提升抗体质量和维持免疫记忆;mRNA疫

苗能够诱导出持久的CXCR3+Tfh细胞应答,并且在

淋巴结中持续存在,为长期免疫提供了有力支持;病
毒载体疫苗能够快速激活Tfh细胞应答,在早期免疫

防护中发挥重要作用,但在持久性方面需要进一步优

化;重组蛋白疫苗和病毒样颗粒疫苗能够诱导出较强

的Tfh细胞应答,并且具有较好的交叉反应性。未来

的疫苗设计可以针对这些特点,利用各自的优势,诱
导更全面、更持久的免疫反应,从而提高疫苗的保护

效果,更好地应对SARS-CoV-2及变异株的威胁。

5 展  望

Tfh细 胞 作 为 体 液 免 疫 调 控 的 核 心 枢 纽,在

SARS-CoV-2感染及疫苗免疫应答中扮演着关键角

色。未来研究应整合多组学技术,系统解析Tfh细胞

在SARS-CoV-2感染和疫苗接种过程中的动态调控

网络,深入揭示其在免疫应答中的功能机制,为基于

Tfh细 胞 的 精 准 免 疫 策 略 提 供 理 论 支 持。鉴 于

SARS-CoV-2持续变异,研究Tfh细胞对变异株的免

疫应答机制显得尤为重要。通过阐明Tfh细胞如何

识别变异株抗原、评估其免疫应答强度及持久性,从
而为开发具有更好交叉保护能力的SARS-CoV-2疫

苗提供科学依据。最终,通过优化疫苗设计,精细调

控Tfh细胞亚群的平衡,实现更持久、更广泛的免疫

保护效果,为应对SARS-CoV-2变异株及其他潜在病

毒威胁奠定基础。
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