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Research progress of deep learning in the identification of human intestinal parasite eggs”
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Abstract : Intestinal parasites in humans exhibit characteristics of a wide prevalence range and severe harm
in China,especially in remote areas. Traditional diagnostic approaches mainly rely on manual microscopic ob-
servation, which has limitations such as low efficiency and strong subjectivity. In recent years, with the rapid
development of artificial intelligence,deep learning has been widely applied to the research of automatic para-
site identification,owing to its excellent performance in image recognition tasks. This article systematically re-
views the research progress of deep learning models with the convolutional neural network as the core (such
as AlexNet,ResNet,and the YOLO series) in the automatic identification of intestinal parasite eggs in hu-
mans, providing a reference for further promoting the application of new artificial intelligence technologies in
this field.
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