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Abstract: Objective To construct a regulatory network of specific miRNA-mRNA for the retreatment of
tuberculosis (RTB) based on exosome database,and to provide theoretical support for the study of the patho-
genesis of RTB. Methods Exosome database was established by using the peripheral blood of patients with
initial differentially expressed miRNAs and differentially expressed mRNA were screened,and the differential-
ly expressed miRNAs in RTB-specific downstream target genes were predicted and enriched by the miRNet
database. The visualization software Cytoscape was used to draw the miRNA-mRNA regulation network dia-
gram. Results There were 92 independent differentially expressed miRNA in ATB and 11 independent differ-
entially expressed miRNA in RTB. There were 201 independent differentially expressed mRNA in ATB and
308 independent differentially expressed mRNA in RTB. The intersection of RTB-specific differentially ex-
pressed mRNA and RTB-specific differentially expressed miRNA prediction was comprehensively analyzed,
and a total of 8 target genes were targeted. The top 20 key genes were analyzed by PPI network topology,in-

cluding target genes of miRNA with high expression of RTB-specific differential expression genes miRNA ;
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PABPCI1,EEF1A1,VCP,and HNRNPAT, and target genes with low expression of RTB-specific differential

expression genes miRNA: DDX17, MAPK14, FLNA, TPT1 and POLRZ2E. Conclusion

PABPC1, EEF1AL,

VCP, HNRNPA1,DDX17,MAPK14,FLNA,TPT1 and POLR2 might be key genes specific to RTB and play a

regulatory role in disease development.
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