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Abstract ; Objective To investigate the effect of oxygen-glucose deprivation/reperfusion (OGD/R) on the
expression of miRNAs in astrocyte exosomes. Methods Primary cultured neonatal cortical astrocytes of SD
rats were subjected to oxygen-glucose deprivation (OGD) or OGD/R treatment,and the culture medium su-
pernatant and intracellular exosomes were collected by ultracentrifugation. Exosomes were identified by trans-
mission electron microscopy and flow cytometry. The Illumina Hiseq2500 sequencing platform was used to de-
tect the expression profile of exosomal miRNAs,and the miRNAs whose expression was affected by OGD and
OGD/R were selected. Real-time fluorescence quantitative polymerase chain reaction (qPCR) was used to ver-
ify the differentially expressed miRNAs in bioinformatics analysis. Metascape and miRWalk were used to pre-
dict the target genes of the highly expressed miRNAs,and then the selected common target genes were ana-
lyzed by KEGG enrichment in Webgestalt. Western blot (WB) was used to detect the effect of exosomes de-
rived from OGD/R and astrocytes on the phosphorylation of Erk in SH-SY5Y cells induced by all-trans retin-
oic acid (ATRA). Results Compared with the control group, OGD 4 h treatment changed the expression pro-
file of exosomal miRNAs in astrocytes. However, most of the altered miRNAs after 24 h of reperfusion re-
turned to the control level. qPCR validation showed that the distribution level of the three miRNAs in exo-

somes was much higher than that in cells,and this enrichment effect may not be affected by OGD stimulation.
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KEGG enrichment analysis showed that the target gene signaling pathways of up-regulated miRNAs were
mainly metabolic pathways, including PI3K-AKT, MAPK and mTOR signaling pathways. The levels of p-
Erkl and p-Erk2 in SH-SY5Y cells treated with exosomes from OGD, OGD/R and normal astrocytes were

significantly up-regulated under corresponding culture conditions. Conclusion

OGD treatment can significant-

ly affect the expression of exosome miRNAs in astrocytes. The enriched and distributed miRNAs in exosome

of astrocytes target metabolic pathways,such as PI3K-AKT,MAPK,and mTOR signaling pathways.
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Y IE M 5 -CGCGTGAGGTAGGAGGTTGT-3'; let-
7a-5p Bl 9. 1IE 7 : 5 -GCGCGTGAGGTAGT AGGT-
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CAGGGTCCGAGGTATT-3'; U6 5| ¥, 1F [4]: 5~
CTCGCTTCGGCAGCACA-3', & [i]: 5'-AACGCT-
TCACGAATTTGCGT-3',
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K (P>>0.05),0GD 4 h 4 ¥ S F535 T i
7 miRNAs K2 2= FXT A iR LRIt R
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microRNAs P

XA OGD4hg
miR-384-5p 5674 2111 0.37 <C0.001
miR-421-3p_R+3 1718 425 0.25 0.004
miR-361-5p 5371 1817 0. 34 0.01
miR-16-5p 214 025 70 255 0.33 0.003
miR-24-3p 40 990 13 257 0.32 0.019
miR-25-3p 31 602 8 301 0. 26 0.024
miR-92b_R+1 42 088 13 282 0.32 0.029
miR-128-3p 1949 823 0.42 0.043
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ZR1  OGD4 h HINX BAMLE
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microRNAs P
A4l OGD4 hgl  FHE
miR-151-3p 2 377 892 0. 38 0.036
miR-23b_R+1 106 2 540 24.01 <C0.001
let-7{-5p 2 336 30 691 13.14 0.007
let-7e-5p 1705 14 756 8.65 0.011
miR-98-5p_R-1 1196 4253 3.55 0.017
miR-30¢-5p_R-1 3 268 11 636 3.56 0.021
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let-7d-5p 6 351 29 459 4. 64 0. 049
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x2 OGD 4 h/R 24 h#1 OGD 4 h ARy b %
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25t

microRNAs 0GD 1 b4 OGD 4B/ P
R 24 h#

let-7f-5p 30 691 2 146 0.07  0.001
miR-30c-5p_R-1 11 636 3152 0.27  0.002
miR-23b_R+1 2540 63 0.02  0.002
miR-151-5p 4528 1048 0.23  0.002
let-7e-5p 14 756 1375 0.09  0.005
miR-98-5p_R-1 4253 1195 0.28  0.007
miR-339-5p_R-2 1112 108 0.1 0.018
let-7a-5p 20 550 1 566 0.08 0.028
miR-129-2-3p 3946 8 418 2.13  0.003
miR-674-5p_R-1 598 1 464 2.45  0.004
miR-30a-5p_R+2 5 206 13 146 2.52  0.005
miR-1839-5p 1178 3501 2.97  0.006
miR-384-5p 2111 5 426 2.57  0.007
miR-423-5p_R-1 980 5313 5.42  0.016
miR-20a-5p 16 402 36 703 2,24 0.02

miR-25-3p 8 301 26 366 3.18  0.021
miR-361-5p 1817 1995 2.75  0.022
miR-24-3p 13 257 39 668 2.99  0.024
miR-151-3p 892 2 160 2.42  0.028
miR-9a-3p 18 740 60 433 3.22  0.031
miR-128-3p 823 1688 2.05  0.038
miR-16-5p 70 255 194 315 2.77  0.047
miR-203a-3p 533 1350 2.53  0.047

- mapped reads F R B AR AN T A reads BA(LLE T A
LD
2.4 gPCREGIE O 7 #F— 2 5E miRNAs &k K
T, AR 2.3 hERAESITEE LN
miRNAs I #E T let-7 K% W H1 let-7a-5p. let-Te-
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A, OGD 4 h AR let-Ta-5p FiE K FXf
MR A AR T 8 263K 7K S (P <20, 05) L fij let-7e-5p Fil
let-7{-5p MY R IKKF-5 0] A H 8, 22 5 LG4
X(P>0.05), WK1,
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=31
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50 Q

b 50
\e\j& \e\j @
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2.5 KEGG F&HE4H  MXTH4.0GD 4 h 4 f1
OGD 4 h/R 24 h 2H v 43 5 ¥k % 55 #2535 19 miRNAs
(B TFEHE), ] metascape il miRWalk T ] $1 3
S BRI A [F] A B0 K [ FE Webgestalt h 47 KEGG
SN 3 A AP IR E A miRNAs [y # 3E [FH
FE v K W) A5 5 38 32 2 O AR A O 38 K, i PISK-
AKT.MAPK fil mTOR {5 5 #%. 3 4+ 41k
miRNAs &% W55 8 LA L3 41 & £ 0
HEFUAESE 1 A58 9 A 1 {5 538 I 4 T A0 (7] 5 17 7 &
RBNMIHT 20 Z5A5 S i vh HUA W 2% {5 5 A T 22
W53 HIAEAE DR 25 5. 0 OGD 4 h v %A & 4
F| Wnt {F53# 8% ,0GD 4 h/R 24 h A& A &5 £ 5
AMPK {55 i@ % .

2.6 IR INBRAF OGD 4P X} SH-SYSY
i Exk 558 B2 O 73— 20 55 UE A M R
L OGD A XS 2. 5 w43 B 45 B 19 15 5 38 B 19 5% )
WEFE T MAPK/Erk {5538 B S0 560 0E . 43 B4R LT
IR A R4 . OGD 2 h 41 .0GD 4 h 41 .0GD
2 h/R 24 h 41.0GD 4 h/R 24 h 4443 WA i) A WA 4%, 45
SIE T AR R AL B SH-SY5Y 41 i, 48 Ji5 42 B 48 il
SV X p-Erkl p-Erk2 2 1 fl Erkl Erk2 & 1 3%
EHEFFME . OGD 2 h i1 OGD 4 h Ab B SH-SY5Y
4l p-Erk 7K F R iH(P<<0.05), i % T OGD 2 h #il
4 h g B TR R 5T 40 M A A AR U R 335 % OGD 2 h fil 4 h
T B SH-SYSY 4 il p-Erk /K F 8 T # (P<
0.05), OGD 2 h/R 24 h i1 OGD 4 h/R 24 h kb FE{¢
fili SH-SY5Y 4 i p-Erk /K3 (P <0. 05) .1 44
¥ OGD 2 h/R 24 h il OGD 4 h/R 24h kb Y 2%
JB2 J55 41 A0 6 44 0 BB 3% % OGD 2 h/R 24 h Al OGD 4
h/R 24 h i S i SH-SY5Y 418 p-Erk /K F 5 F 4
(P<C0.05), BUAI. 45T 15 R A B2 T8 e J53 400 1t 4 1 1)
SN PEAT A P R B R IE W S F R B 3R I SH-
SY5Y 4l p-Erkl.p-Erk2 /K- (P<0.05), WK 2.
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