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Research progress of CRISPR-Cas systems in nucleic acid detection of pathogens”
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Abstract ; Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated

proteins (Cas) ,abbreviated as CRISPR-Cas,is an adaptive immune system of prokaryotes. It has become a re-
search hotspot in recent years due to its powerful gene editing function and nucleic acid cleavage activity. Al-
though the traditional detection methods of infectious diseases have high specificity, they are insufficient in
lower sensitivity,complicated operation and long turn around time (TAT). With the discovery and in-depth
study of CRISPR-Cas system,a number of nucleic acid detection methods based on CRISPR-Cas have been de-
veloped, which rely on the activation of Cas protein collateral cleavage activity after specific recognition of the

target. They are efficient,simple and rapid,and make up for the shortcomings of traditional diagnostic meth-
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ods. Here we review CRISPR-Cas technology and its current status in nucleic acid detection of infectious disea-

ses,in order to provide a strategy for future development of more novel detection methods based on CRISPR-

Cas technology.
Key words: CRISPR-Cas system;

detection

Cas proteins;

TR P I AR FP R B I R B WA
Joa B AN R 55 AT 5 28 7 o e L A R
PRAG S T B A . AT R e R
g 1 R AN 25 2 0, I HE 2 O B ek R 7 (SARS-
CoV-2) [ Y 8 AT » ™ S T J AR 1y 52 S0 e sk A )
XTI AR I2 W T W, DL K R 2 AL R G
SR AR GE EAR K I J  A HE ERE BEAG  J
o e 5 85 5 P -k R R A fE =X RN
(PCR)%E, H i 55 56 = e % F 092w ke I £ R 2
PCR, S48 F R 05 & L FE 55 0k 4 (B A7 7 52 56 FE B
o A B AR = X S R LN D A R AR
A DR 3 T A R Y R
MBRIZ W7 1k . MAFE R, 3% T B A Bl 1 1) B 0[] ¢
45 551 & HAH 6 2 11 (CRISPR-Cas) 19 & 3 AR A
BF 58 45 BF 58 & 45 ok T A #17). 2016 4F ABU-
DAYYEH 4 % 8™, Cas12 ELAT “Bi 47 b) &0 73% 1, Bp
A5 E BT ) Z )5 . Cas 5 F1 IR 0] LUK S v 1)
B S 7 50 A1 38 25 JE 5 5 0 1 U0 E) 5 0 4 R B
e RS, Al DLk B OB . BbE. T
CRISPR-Cas [ 4% B2 15 I £ A Bk 25 22 (1 58 J5 1n] 22
—. ACHAEX I 2 CRISPR-Cas R 4t J H 7 J& g
P 5 A TR A I Ty T 1) o P BR AT 253
1 CRISPR-Cas % % #%i4
1.1 CRISPR-Cas &4 M 4r2k CRISPR-Cas & 4t
RJFAZ AV —F RNA 5] 50938 N R 2450, 1
FEELZ T 5 5 BT 50585 3R CRISPR JF 41 )
Cas 25 [ . Ho3l o 76 40 18 15 £ Y 1k LU 5 DNA
TR SABAF T AL A B Lk e i A e e L X R Gl
TN EEGT R 3 AN B R e i RE . B — BB,
4105 B R Bk T AR I 4 B e 9 B A AL RO
Cas 2 1 85 Y AR 2 A 45 € 7 9 JF % 8 4 3
CRISPR ¥4I H s DLE FRR A AR I RBP4 51 5 26 — By
B ) By 0 B3 R B AR T 91 1 CRISPR 20 %
2 CcrRNA) F1 R0% RNA (tracrRNA) . — %% 58 i+
B KL FE AT B 18] 5 RNA (sgRNA) , I T 554 Cas &
F 528 = B Bt M AN YRR AR BT, sgRNA 5 Cas
BEASEAREAY . sgRNA 38 3F 5 51 5 4 42 8057 .
Cas 25 [ % #8 9 VB 35 % 17 U050 I 76 1 [\ B 7
G SR (PANMD B 0 B T W BR AR R st (B Wy ot , &
AR,

Cas 8 M2 HAT B br MO8 M 19 4% fe Bl . 7T B 24>
EHREEAR YA, R AR Cas EH K
CRISPR-Cas &% 4r I KIS .6 PP AU (33 Fj 7 7Y Al

collateral cleavage;

infectious diseases; nucleic acid

LSRR T2 RS T AL A AV B4 &
BRI Z A Cas B H M orRNA A E 595 1
KAGURFE N VAV, 5 KRG HL. 12
REMBNE AW IR — 15 aoRNA 54 1 — Cas
EAMY . BT 2R CRISPR-Cas & 48 H A i 5 H.
e KA R A DR ) Yz I 3 R 4 N G 2
itk . CRISPR A5 1138 B ¥ G & 1 — R 51 1) Cas &
F I & BLAITR A 5T A AL G 0T 35 A 4 6 14 A8 5
IR HESD T R R K I AN W HE R B

1.2 CRISPR-Cas RGA% I f I 53 CRISPR-Cas
RGEVENMEY I R G hEFARENE
BT B W N 18 58 ) Bk B TR R I (ZFND (5%
S BT T RE RN, A% R il (T ALEND 45 3% [H] 45 # J7
SV TE B A L 2012 4F MARTIN 2850 95 ik
4ty 7 CRISPR-Cas9 Z %t (1) 3k [H 2 2 4808 1 S FL D)
H#IAEE DNAGAsDNA) B REJ7 . JF T 2013 AE EH IRFEH
P EE AW T HMHTWIL s ai . Hui kT
B TR 2 4 86 () 0T 9 2 B AR v A s B IR L0 I R
(CVDs) ARIHIZEAEL s R Gl b 1 A2 25 05 -
AR . Cas13a(LARTFR g C2¢2) 1 Casl2a(LARTFR Hy
CpfD) i RNA 5| 5 1% 4% 8 [ 15 1 4 2 708 10 4% 1R A6
W THMHF k. 3T CRISPR-Cas 4% 2 f I 7 AR
FEIEF A AR Cas HAMZIREGFE %, 11 28 Cas
EEEEBRI Az 8 A KR A A A E . H
W, Cas9 DAL DR 4 4 1) 4 . ] F TG . £ 2
g5 HNH fl RuvC, HAK# 3" 3 & & GC 1y
PAM %, 13 sgRNA 454 Cas9 J5 iR 5l 324 % ds-
DNA K% H A% BB I% 1Y . Cas12a 45 Fy 3y 5
A RuvC, K #i i) PAM J¥ 51 536 & &% AT, ol DLAE
crRNA 47 5 TR 51 - U1 %) dsDNA, 2K J5 38 1 00
P B 1S DD 07 0 2k R R S M B #) PR S DNA (ssD-
NAM | Casl3a #i15 RNA HHA 2 4 HEPN Z5 4
3o, HLARE A4 ] B 0 3507 (PES) 37 3 o] ) S
AU g C,Casl3a — H iR B VI HI B crRNA ¥ 4137
S RNA FEAR 50 AT — B 42 “ 908 7R3 1 45
GO E A RNA, W AE R E S orRNA [A
R AEAE PFSYY . it KB Casl4 Jg— Ff #E fi)
ssDNA B #% B2 Bl . H AR FL . Cas9 /N 1/2, 7] DL FE
sgRNA 5| F AH# PAM LRI 1E R . Bk
JLF CRISPR-Cas RS0 FZERFAE WK 1,

2 CRISPRCas B AERBRELMERZBRENFH
W FH

2.1 CRISPR-Cas9 Cas9 H#EIMLIE . BTN
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BE S IFAEIR R O A SR A 58 R 7 A ]
Kl 0 15 5, SC B bR 4 DNA F1 RNA (1 B 5 I 43 9t
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G. ZJE.GUO 5l b6 A5 A 4k BRI R4 44 7
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detection
PC reporter PCR gD PCRJ5 10 min  5EGfFS DNA SRS RAT [27]
Casl3a  SHERLOCK RPA 107" mol/L 2h POLES  DNA/RNA 2R [29]
SHERLOCK v2 RPA 10~ mol/L 0.5~3.0 h P S DNA/RNA  ZERG [30]
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LOCK RPA 107" mol/L <2h YAES RNA SARS-CoV-2 [31]
Casl2a DETECTR RPA 107" mol/L 30~40 min  FHAFS RNA SARS-CoV-2 [36]
HOLMES PCR 10" mol/L <lh JMES DNA Z I 15 [37]
Casl2aVDet RPA 10~ mol/L <30 min PO L £ DNA SR [38]
Casl2b HOLMESv2 LAMP 10" mol/L 1h WHES DNA SARS-CoV-2 [41]
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Caslda Casl4-DETECTR RPA 10" mol/L 1~2h YOLfHES  DNA/RNA  HPV [47]
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PLSEG AL 46 28 R0 B 8 IR L HPV O AE K% 5
TN AR 6 7 AR U R B L SARS-CoV-2, HBV,
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