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Research progress of three key enzymes in fat mobilization and their correlation with cancer”
XU Shuai'? ,ZHANG Ming® .GAO Xin® ,REN Congcong'*,ZHAO Jing"*
1. Graduate School of Hebei North University ,Zhangjiakou , Hebei 075000, China ;2. Department
of Oncology , Hebei General Hospital ,Shijiazhuang , Hebei 050051 ,China ;3. Graduate
School of Ningxia Medical University ,Yinchuan . Ningzxia 750004 ,China

Abstract; Metabolic reprogramming is one of the hallmark features of malignant tumor cells. Active lipid
metabolism produces large amounts of lipids, which provide the basic raw material molecules for biofilm struc-
ture,nutritional support,energy supply for the biofilm structure of tumor cells. Metabolic reprogramming is
one of the signature features of malignant tumor cells and synthesize a variety of cancer-promoting signal mol-
ecules,thus promoting the growth, proliferation, migration,and invasion of tumor cells. Fat mobilization is the
first step in fat decomposition,during which the abnormal expression of key enzymes is an important part of
fat metabolism reprogramming. It has been found that key enzymes ATGL,HSL and MAGL in fat mobiliza-
tion pathway are abnormally expressed in a variety of malignant solid tumors,and the malignant biological be-
havior of tumor cells can be significantly improved by interfering with the expression of these enzymes. There-
fore,it is expected to provide new targets and directions for tumor therapy by targeting key enzymes in the fat
mobilization pathway to improve the lipid metabolism reprogramming of tumor cells and thus generate anti-

tumor effects. The authors review the correlation between the three key enzymes in fat mobilization and tumor

in order to explore new theories of anti-tumor therapy and provide a basis for correlation studies.

Key words: fat mobilization;

lipase
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