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Abstract: Objective To explore the impacts of long non-coding RNA (IncRNA) MSC-ASI on the prolif-
eration,apoptosis,invasion and migration of human nasopharyngeal carcinoma (NPC) cells by regulating the
microRNA (miR)-429/Ras homologous gene family member A (RhoA) axis. Methods real time quantitative
Pcr (qPCR) was performed to measure the expression levels of IncRNA MSC-AS1,miR-429 and RhoA mRNA
in NPC cell lines (CNE-1, HNE2, HONE-1 cells) and human nasopharyngeal epithelial cell line NP69 cells.
Taking CNE-1 cells as the research object, the CNE-1 cells were transfected or co-transfected with si-MSC-
AS1,miR-429 inhibitor,miR-429 mimics and corresponding negative controls, which were recorded as control
group (untransfected) , si-NC group, si-MSC-AS1 group, mimics NC group, miR-429 mimics group, si-MSC-
AS1+inhibitor NC group.and si-MSC-AS1+ miR-429 inhibitor group. MTT method, flow cytometry and Tr-
answell were performed to measure cell proliferation, apoptosis, migration and invasion abilities; dual lucifer-

ase experiments were performed to verify the targeting relationship of miR-429 with MSC-AS] and RhoA;
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Western blot was performed to measure the expressions of RhoA,B-lymphokine-associated X protein (Bax),
epithelial cell cadherin (E-cadherin),cyclin D1 (CyclinD1) and neural cadherin (N-cadherin). Results MiR-
429 had a targeting relationship with MSC-AS1 and RhoA, respectively. Compared with NP69 cells, the ex-
pressions of MSC-AS1 and RhoA mRNA in CNE-1, HNE2, and HONE-1 cells were significantly increased,
and the expression of miR-429 was significantly decreased, and the differences were statistically significant
(P<C0.05). Compared with the control group and si-NC group,the cell proliferation rate, the numbers of mi-
gration and invasion,the expression level of MSC-AS1,N-cadherin, RhoA and CyclinD1 in si-MSC-ASI1 group
were significantly decreased,and the cell apoptosis rate, E-cadherin,and Bax were significantly increased,and
the differences were statistically significant (P <C0. 05) ;compared with the control group and the mimics NC
group,the cell proliferation rate, the numbers of migration and invasion, the expression level of N-cadherin,
RhoA and CyclinD1 in miR-429 mimics group were significantly decreased,and the cell apoptosis rate, miR-
429,E-cadherin, and Bax were significantly increased, and the differences were statistically significant (P <<
0. 05) ;inhibiting the expression level of miR-429 attenuated the effect of interfering with MSC-AS1 on the
Interfering with MSC-AS]1 can inhibit the pro-

liferation,invasion and migration of NPC cells and promote their apoptosis, which may be related to the miR-

malignant biological behavior of cells (P<C0. 05). Conclusion

429/RhoA axis.
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1.3 4ifssge 5% % CNE-1.HNE2.HONE-1,
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JL, 106 45 8 e (0 3 d5 4000 5 18 B I M B kAT O
flfi, T BAEL B S5RELE 2, A Tran-
swell /NE AR Matrigel £,

1.7 Wi ARG AT WEE R 48 h 5
YL AN 4y ) 4 BT 24 FLAR (2. 5 X107 4~ /FL)
PBS /NLPEW 2 KL, B3 B . o FITC B M .
1 R AT iyl | S A = Sl S B G 1 0 B S Y S O
24°C TR X L4 B 10 min. 2R 5 38 o8 7 =X 40 i A
ST TR A T AL R E R MM 4 LA
RS2 I B R T

1.8  XUFOGR A LG e o i 4 B A
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L, si-MSC-AS1 41 240 fl 34 56 % 1R 22 5 B ALl
MSC-AST ik 34 5 35 BEAG , 40 M 8 TR &8 35 10 m L 22
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%3,

2.4 Pl miR-429 3855 T T4 MSC-AS1 Xt 4 ffg 34
FEOHT- AR 2. EB MmN 5 si-MSC-AS] + in-
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PG, 2 5 1 S it & X (P <<T0. 05), miR-429
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MSC-AST H L, 2K Gt %2 L (P>0.05), IL
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MSC-AS1 3'UTR-WT 5' ggccaauguaaAGCCAGUAUUa 3'

MSC-AS1 3'UTR-MUT 5' ggccaauguaaGACACUGUAAa 3'
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0.0~
KA REGEREE
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6 IS F miR-429 5 MSC-AS]1 RI8Bm % &
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RhoA 3'UTR-WT 5' gucaUCUUGCUACCCAGUAUUu 3'
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7 Starbase ##EEF M miR-429 5 RhoA &AL &

2.6 Ay B kA I % 2 40 M b R O 2R 3R A K
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RhoA . N-cadherin, CyclinDl Kk /KFE g & F ng

Bax.E-cadherin L B EW I, ZR G5 iF¥%E X
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(P<20. 05) ; 5% B 41 . mimics NC 41 4H kb, miR-429
mimics 21 40 i F RhoA ., N-cadherin, CyclinD1 % ik
K- #F %, Bax. E-cadherin ik K i F ¥,
ZRAGI 2R L (P <C0.05) ;5 si-MSC-AS1 +in-
hibitor NC 414 kb, si-MSC-AS1 + miR-429 inhibitor
2 RhoA . N-cadherin, CyclinD1 & ik 7K F & 2 84 i,
Bax.E-cadherin %5 B E MK, ZR AR ¥ E X
(P<0.05), WKl 9.10,
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mmm miR-429 inhibitor+WT-RhoAZH
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a
0.5+ ﬂ
0.0-

WHREGHEXEM
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8 I8IF miR-429 5§ RhoA Hy¥EE X &
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CyclinD1 D D ws D o= s=n 0
E-cadherin e S N s S S
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B -actin ..“.“

9 ZHEMAEXE R RIE Western blot 53R

mm  fERZE mm miR-429 mimicstA
B si-NC4E mm si-MSC-AS1+inhibitor NCZH
si-MSC-AS14R B si-MSC-AS1+miR-429 inhibitor4f
1.5 mimics NCZH

T 5 X 4L 8L, P <<0. 05, 5 si-NC 41 L #8,"P <C0. 055 15
mimics NC 2 [ 8,°P <C0. 05; 5 si-MSC-AS1 + inhibitor NC 41 ¥
#%,9P<<0. 05,

B 10 LB EHMBPHEAEANRIEKTE

3 4 ®
NPC #IA W 2 B KM 2 — 5 B BLTE S

Jpis A B B TS L RO % W ) P RRAES . B
A B 8 VA T 7 T R O T )28 S0t 5 T2 W i
JUAF- Kb 1 i 309 T i 22 0 P R B e v R AR R
FiE A AR B AT NPC 6 7E 19 #8500, IR I B
NPC 11 & Ja ML G T 4% T80 #5  2s NPC B i
JEE X E K,

HIF 5% & LK 2L IncRNA 9 ik K F ok 48 5
NPC R ELBEVIMAL, HRC A LKM T ZH In-
cRNA Z 517 NPC 4 g A K. W1, i % 7
2000 Bk Ay R AN BE ST & BLAE HONE-1 40 i #F 52
1 IncRNA JPX 4 F R ik, T IncRNA JPX Fik
AT LA HONE-1 4 i 3% 5 L 12 28 . MSC-ASI
R AW IncRNALHH S 515 Z MR it g, HU
202148 58 MSC-AS] 3 3 8 35 miR-3924/WNT5A/
B-catenin 125 5 i U 4N M 4 19 3% 58 FIAT R2 . FE B
B F 5T b, 3 3k MSC-AS1 RE % W A
A2780 F1 SKOV3 20 fg 7 T, 410 1 240 g 34 5 . A A5 7
BEIJE . 7E NPC 4 4UR 40 il MSC-AS] FikKF- 2
Y fEE NPC 40 i 386 L BELAS 7 40 i o8 T, 3
R TR 28 M I R 8] it % Ak, 78 MSC-AS1 7 #1E
7 IncRNA #1343 ¥7 NPC #8045, YAO 210 3
R IAE NPC 4 21 i 4 il & o MSC-AS1 & ik K
S F R L AT R R IE 9T NPC R T e 41 5, A BFST & B
5 NP69 41 il #f ., MSC-AS1 235K F#F CNE-1 4
Ji g . T MSC-AST # i T CNE-1 21 Jifd 18 5
TR MR 28 DL e 34 5 A B8 (1 CyelinD1 . 8] BT Ar ic 28
[ N-cadherin 257K, B & 400 78 TR LA K I 2 bR
iIE#E H E-cadherin, i T- /R H Bax Rk, xR T
Pt MSC-AS1 Al fE CNE-1 40 it p K ¥ VE .

miRNA J& — 4 BG4 22 AR HE g 15
RNA il 55 mRNA 6, 2 fic X, 7] £ by 36 R 3k 1)

AR, AR L4 miRNA 5 NPC # @48
K, miR-429 & miRNA F i b — B, 78 B2 e

R R R R bR A T B ZHANG
25 USURIE 5 BA E R BB SR A Y B 2 4 b 2 B
miR-429 T, miR-429 34 NG F T & Wi fl 5 . A
WF5E &% B miR-429 7£ CNE-1 41 Jiid v 3 1k /K F i 2 %
i, ik E 38 miR-429 6l T CNE-1 4 jd 3 5% 1T 7% .
278 ) M N-cadherin. CyclinD1 & ik 7K 3, 42 i3k 20 g
T LA & E-cadherin.Bax &3k 7K F, $#£/8 miR-429 &
5 NPC & i3, RhoA 2 MM T HxERE
1) 2R 1A T 22— o 6 R Y A0 8 2 L 56 0 2 B O T R
HERELTEEMERT ., WU 2 BF58 & i o
F ] DLl I RhoA {5 538 B% . 1% S Ml 87 48 e i
¥ 127, WANG %" &3 NPC B & 1, RhoA %
BACERIN, 5B E AN B UG B E MG, A5 45 R
&I RhoA mRNA 75 CNE-1 40 it vh 5 35 54 /0, 3o %
ik miR-429 8 T4k MSC-AS1 ¥J{fi RhoA ik /KFF
R PR R A6 % B A R IR AT BB B TP CNE-1 410
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RAEA L, 5] A miR-429 inhibitor 8 7] & 5256, 45 5 &
P miR-429 Fik v I 55 T3 MSC-AS1 % CNE-
1 4 S A W 22 AT B S

Zi I fr ik . MSC-AS1 78 CNE-1 4l ffd o &2 & 3%
ik, T8 MSC-AST 3 i 1 #2 miR-429, B % RhoA
FIRkAKE I CNE-1 20 JfL (% 35 78 1= 28 F it 4%, 42
T, NPC B G 09 18 76 A 308 A B s R
FAR NS A LI IE S 0] O R L EM AR Z A, G
SEWFIE K S TSR S5, o — 25 I S S A0
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