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Abstract ; Energy metabolism is the basis for bacterial growth and reproduction,and it is also an important
factor affecting its pathogenicity. In this paper, the physiological significance of each link of bacterial energy
metabolism is reviewed,and the significance and existing problems of the pathogenicity of different bacterial
energy metabolism-related genes or enzymes are discussed. Genes or enzymes related to energy metabolism are

likely to become new target sites for antibiotics,providing new ideas for the prevention of bacterial diseases.
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